全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于TCGA数据库建立肾透明细胞癌预后模型并探究其免疫浸润特征
Establishing a Prognostic Model for Renal Clear Cell Carcinoma Based on TCGA Database and Exploring Its Immune Infiltration Characteristics

DOI: 10.12677/jcpm.2025.41112, PP. 794-805

Keywords: 肾透明细胞癌,免疫微环境,TCGA数据库,预后模型
Renal Clear Cell Carcinoma
, Immune Microenvironment, TCGA Database, Prognostic Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究基于TCGA数据库,采用生物信息学方法构建了肾透明细胞癌(ccRCC)的蛋白质预后模型,并探讨了其免疫浸润特征。通过蛋白组学分析筛选出8个关键蛋白质,建立了预测患者预后的模型,并通过生存分析、ROC曲线及风险曲线对模型的稳定性与准确性进行了验证,进一步应用列线图预测患者的生存期,为临床决策提供辅助工具。此外,分析了模型中蛋白质间以及模型蛋白与其他关键蛋白之间的共表达关系,揭示了它们在ccRCC中的潜在作用。研究还深入探讨了免疫细胞的表达情况,并比较了高风险组与低风险组的免疫应答差异。结果显示,免疫细胞的浸润与患者预后密切相关,高风险组显示出较低的免疫应答,提示免疫微环境可能在肾透明细胞癌的进展中起重要作用。本研究为肾透明细胞癌的个体化治疗提供了新的预后模型,并为免疫治疗的相关研究奠定了基础。
Based on the TCGA database, this study constructed a protein prognostic model for renal clear cell carcinoma using bioinformatics methods and explored its immune infiltration characteristics. Eight key proteins were identified through proteomic analysis, and a model for predicting patient prognosis was established. The stability and accuracy of the model were validated through survival analysis, ROC curve, and risk curve. Furthermore, column charts were used to predict patient survival, providing an auxiliary tool for clinical decision-making. In addition, the co expression relationships between proteins in the model and between model proteins and other key proteins were analyzed, revealing their potential roles in ccRCC. The study also delved into the expression of immune cells and compared the differences in immune responses between high-risk and low-risk groups. The results showed that the infiltration of immune cells is closely related to the prognosis of patients, and the high-risk group showed a lower immune response, suggesting that the immune microenvironment may play an important role in the progression of renal clear cell carcinoma. This study provides a new prognostic model for individualized treatment of renal clear cell carcinoma and lays the foundation for related research on immunotherapy.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2]  Bueno, A.N., Stein, M.N. and Runcie, K. (2024) Adjuvant Therapy in Renal Cell Carcinoma (RCC): Progress, at Last. Translational Cancer Research, 13, 6448-6462.
https://doi.org/10.21037/tcr-23-2247
[3]  Padala, S.A., Barsouk, A., Thandra, K.C., Saginala, K., Mohammed, A., Vakiti, A., et al. (2020) Epidemiology of Renal Cell Carcinoma. World Journal of Oncology, 11, 79-87.
https://doi.org/10.14740/wjon1279
[4]  Hutter, C. and Zenklusen, J.C. (2018) The Cancer Genome Atlas: Creating Lasting Value Beyond Its Data. Cell, 173, 283-285.
https://doi.org/10.1016/j.cell.2018.03.042
[5]  Xiao, Y. and Yu, D. (2021) Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacology & Therapeutics, 221, Article 107753.
https://doi.org/10.1016/j.pharmthera.2020.107753
[6]  Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., et al. (2021) Crosstalk between Cancer-Associated Fibroblasts and Immune Cells in the Tumor Microenvironment: New Findings and Future Perspectives. Molecular Cancer, 20, Article 131.
https://doi.org/10.1186/s12943-021-01428-1
[7]  In, J. and Lee, D.K. (2019) Survival Analysis: Part II – Applied Clinical Data Analysis. Korean Journal of Anesthesiology, 72, 441-457.
https://doi.org/10.4097/kja.19183
[8]  Balachandran, V.P., Gonen, M., Smith, J.J. and DeMatteo, R.P. (2015) Nomograms in Oncology: More than Meets the Eye. The Lancet Oncology, 16, e173-e180.
https://doi.org/10.1016/s1470-2045(14)71116-7
[9]  Shen, G. and Wang, W. (2022) Circlize Package in R and Analytic Hierarchy Process (AHP): Contribution Values of ABCDE and AGL6 Genes in the Context of Floral Organ Development. PLOS ONE, 17, e0261232.
https://doi.org/10.1371/journal.pone.0261232
[10]  Brunson, J. (2020) Ggalluvial: Layered Grammar for Alluvial Plots. Journal of Open Source Software, 5, Article 2017.
https://doi.org/10.21105/joss.02017
[11]  Chen, B., Khodadoust, M.S., Liu, C.L., Newman, A.M. and Alizadeh, A.A. (2018) Profiling Tumor Infiltrating Immune Cells with Cibersort. In: von Stechow, L., ed., Cancer Systems Biology: Methods and Protocols, Humana Press, 243-259.
https://doi.org/10.1007/978-1-4939-7493-1_12
[12]  Hänzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics, 14, Article No. 7.
https://doi.org/10.1186/1471-2105-14-7
[13]  Ito, K. and Murphy, D. (2013) Application of ggplot2 to Pharmacometric Graphics. CPT: Pharmacometrics & Systems Pharmacology, 2, 1-16.
https://doi.org/10.1038/psp.2013.56

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133