全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生成式数字作物助力农学类课程教学新方法
A Novel Method of Utilizing Generative Digital Crops to Aid in Teaching Agricultural Courses

DOI: 10.12677/ces.2025.132135, PP. 429-434

Keywords: 生成式人工智能算法,数字作物,课程教学,农业数据大模型
AI-Generated Algorithms
, Digital Crops, Course Teaching, Agricultural Data Large Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

农学类课程的现有讲授式课堂教学缺乏直观感受,而实验室或现场教学对条件要求高,费时费力。针对上述问题,文章提出通过生成式数字作物营造低成本且具有现场沉浸感的教学环境,从而助力农学类课程教学的新方法。该方法采用Transformer和扩散模型(Diffusion Model)这两种先进的深度学习架构,用于模拟作物生长的各个阶段,并生成对应高质量作物图像,模拟作物从种子到成熟的过程,通过不同分镜头实现作物生长过程的控制,能从宏观和微观角度观察作物形状、生理结构、生长机制。通过构建水稻、辣椒、葡萄三种典型示范数字作物过程,证明了这种教学方式的高效性。
The current pedagogical approach in agricultural education, characterized by traditional lecture-style classroom teaching, often lacks an intuitive experiential component. Conversely, laboratory or on-site instruction necessitates high resource conditions and tends to be both time-consuming and labor-intensive. To address these challenges, this paper proposes a novel method that employs generative digital crops to establish a low-cost and immersive teaching environment, thereby enhancing the educational experience in agricultural courses. This innovative approach leverages two advanced deep learning architectures: the transformer model and the diffusion model. These technologies are utilized to simulate various stages of crop growth and generate corresponding high-quality images of crops. The method effectively replicates the developmental process from seeds to maturity while allowing for control over different aspects of crop growth through diverse perspectives. This enables observation of the shape, physiological structure, and growth mechanisms of crops from both macro and micro viewpoints. The efficacy of this teaching methodology has been validated through the construction of three representative demonstration processes involving digital crops: rice, chili peppers, and grapes.

References

[1]  李奇璋, 周选围. 农学在通识教育中的地位和作用及特殊的教育内容[J]. 安徽农业科学. 2009, 37(36): 18311-18314.
[2]  王宽明. 基于可视化表征的文字与图形整合教学策略[J]. 教学与管理, 2017(8): 45-47.
[3]  朱艳, 曹卫星. 作物模拟与数字作物[M]. 北京: 科学出版社, 2022: 1-57.
[4]  师小雨, 鄢继选, 黄芳, 等. 兰州市玉米生长状况无人机遥感动态监测[J]. 农业技术与装备, 2022(9): 58-60.
[5]  王涛. 园艺作物病虫害防治技术研究[J]. 种子科技, 2024, 42(2): 83-85.
[6]  廖维华, 郭新宇, 温维亮, 等. 作物栽培虚拟仿真实验教学系统的设计与实现[J]. 实验技术与管理, 2016, 33(11): 150-152.
[7]  朱新开, 朱敏, 刘涛, 等. 融合虚拟仿真实验技术的作物栽培学教学新模式探讨[J]. 创新创业理论研究与实践. 2023, 6(11): 143-148.
[8]  李煦, 曹小宇, 梁芳, 等. 新农科建设背景下农科通识课程教学模式研究-以农耕文化课程为例[J]. 智慧农业导刊, 2023, 3(1): 113-116.
[9]  Shahab, H., Iqbal, M., Sohaib, A., Ullah Khan, F. and Waqas, M. (2024) IoT-Based Agriculture Management Techniques for Sustainable Farming: A Comprehensive Review. Computers and Electronics in Agriculture, 220, Article ID: 108851.
https://doi.org/10.1016/j.compag.2024.108851
[10]  Duguma, A.L. and Bai, X. (2023) Contribution of Internet of Things (IoT) in Improving Agricultural Systems. International Journal of Environmental Science and Technology, 21, 2195-2208.
https://doi.org/10.1007/s13762-023-05162-7
[11]  Du, H., Zhang, R., Niyato, D., Kang, J., Xiong, Z., Kim, D.I., et al. (2024) Exploring Collaborative Distributed Diffusion-Based AI-Generated Content (AIGC) in Wireless Networks. IEEE Network, 38, 178-186.
https://doi.org/10.1109/mnet.006.2300223
[12]  Gopali, S., Siami-Namini, S., Abri, F. and Namin, A.S. (2024) The Performance of the LSTM-Based Code Generated by Large Language Models (LLMs) in Forecasting Time Series Data. Natural Language Processing Journal, 9, Article ID: 100120.
https://doi.org/10.1016/j.nlp.2024.100120
[13]  赵春江. 农业知识智能服务技术综述[J]. 智慧农业(中英文), 2023, 5(2): 126-148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133