|
联合InSAR形变的四种不同泥石流灾害易发性评价模型对比研究——以小江流域为例
|
Abstract:
传统泥石流易发性评估方法主要依赖于静态数据,限制了对泥石流动态特征的深入理解,从而影响了评估结果的可靠性。InSAR技术能够提供泥石流区域地表形变的连续监测数据,为评估泥石流易发性提供了新的视角。本文将InSAR形变作为重要影响因子,结合地形、地质、水文和人类活动形成五大类影响因子,具体分为10个影响因子;并运用信息量模型(IM)、随机森林(RF)、支持向量机(SVM)和反向传播(BP)神经网络四种包含传统与机器学习的评估模型,进行泥石流易发性评价。实验结果显示,当模型中包含InSAR形变数据作为动态因子时,评估模型的各项评价指标均显示出更高的精度。在四种模型中,BP神经网络模型对本研究区域泥石流易发性识别具有最好的效果,模型精度达到89.5%,更适合该区域的泥石流易发性建模。此外,研究发现小江流域泥石流高易发性区域主要分布在大沟、老凹沟和蒋家沟等地区,应加强实时监测。本研究结果可为小江流域泥石流灾害预测预报和防灾减灾工作提供参考。
Traditional mudslide susceptibility assessment methods mainly rely on static data, which limits the in-depth understanding of the dynamic characteristics of mudslides and thus affects the reliability of the assessment results. The InSAR technology can provide continuous monitoring data of surface deformation in mudslide areas, which provides a new perspective for assessing mudslide susceptibility. In this paper, InSAR deformation is taken as an important influence factor and combined with topography, geology, hydrology, and human activities to form five categories of influence factors, which are specifically categorized into ten influence factors; and four assessment models containing traditional and machine learning, namely, informative modeling (IM), random forest (RF), support vector machine (SVM) and back-propagation (BP) neural network, are used to evaluate mudslide susceptibility. The experimental results show that all evaluation metrics for assessing the model show higher accuracy when the model includes InSAR deformation data as a dynamic factor. The BP neural network model is effective in identifying the mudslide susceptibility in this study area, and the model accuracy reaches 89.5%, which indicates that the BP neural network model has higher accuracy and reliability in the Xiaojiang River Basin, and is more suitable for modeling the mudslide susceptibility in this area. In addition, it was found that the high susceptibility of the Xiaojiang basin is mainly distributed in areas such as Dagou, Lao Au Gou, and Jiangjia Gou along the Xiaojiang basin, and real-time monitoring should be strengthened. The study’s results can provide a reliable reference for predicting and forecasting mudslide disasters in the Xiaojiang basin and for good disaster prevention and mitigation work.
[1] | 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 2014, 60(4): 858-868. |
[2] | 王高峰, 杨强, 田运涛, 等. 泥石流易发性评价模型的构建——以白龙江流域石门乡羊汤河段为例[J]. 干旱区研究, 2019, 36(3): 761-770. |
[3] | Shami, S., Shahriari, M.A., Nilfouroushan, F., Forghani, N., Salimi, M. and Reshadi, M.A.M. (2024) Surface Displacement Measurement and Modeling of the Shah-Gheyb Salt Dome in Southern Iran Using InSAR and Machine Learning Techniques. International Journal of Applied Earth Observation and Geoinformation, 132, Article 104016. https://doi.org/10.1016/j.jag.2024.104016 |
[4] | Modeste, G., Doubre, C. and Masson, F. (2021) Time Evolution of Mining-Related Residual Subsidence Monitored over a 24-Year Period Using InSAR in Southern Alsace, France. International Journal of Applied Earth Observation and Geoinformation, 102, Article 102392. https://doi.org/10.1016/j.jag.2021.102392 |
[5] | Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., et al. (2009) Analysis of Ground Deformation Detected Using the Sbas-Dinsar Technique in Umbria, Central Italy. Pure and Applied Geophysics, 166, 1425-1459. https://doi.org/10.1007/s00024-009-0491-4 |
[6] | 周定义, 左小清, 喜文飞, 等. 联合SBAS-InSAR和PSO-BP算法的高山峡谷区地质灾害危险性评价[J]. 农业工程学报, 2021, 37(23): 108-116. |
[7] | 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. |
[8] | Guo, L., He, Z., Ren, Z., Li, L., Li, X., Ji, H., et al. (2024) Recent Holocene Activity and Regional Tectonic Significance of the Northern Segment of the Red River Fault Zone. Journal of Structural Geology, 185, Article 105194. https://doi.org/10.1016/j.jsg.2024.105194 |
[9] | 周定义, 左小清. 基于SBAS-InSAR和PSO-BP神经网络算法的矿区地表沉降监测及预测[J]. 云南大学学报(自然科学版), 2021, 43(5): 895-905. |
[10] | 周定义, 左小清, 赵志芳, 等. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测[J]. 地质通报, 2023, 42(10): 1774-1783. |
[11] | 刘增波, 徐良骥, 张坤, 等. 融合SBAS-InSAR与CS-SVM的矿区地表残余沉降预测模型[J]. 金属矿山, 2024, 53(8): 133-139. |
[12] | Jang, D., Kim, N. and Choo, H. (2024) Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea. Remote Sensing, 16, Article 2379. https://doi.org/10.3390/rs16132379 |
[13] | 王本栋, 李四全, 许万忠, 等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质, 2024, 57(1): 34-43. |
[14] | 寸得欣, 令狐昌卫, 马一奇, 等. 基于GIS和加权信息量模型的富源县地质灾害易发性评价[J]. 科学技术与工程, 2024, 24(18): 7563-7573. |
[15] | 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. |
[16] | Wang, Z., Wu, F., Hao, N., Wang, T., Cao, N. and Wang, X. (2024) The Combined Machine Learning Model SMOTER-GA-RF for Methane Yield Prediction during Anaerobic Digestion of Straw Lignocellulose Based on Random Forest Regression. Journal of Cleaner Production, 466, Article 142909. https://doi.org/10.1016/j.jclepro.2024.142909 |
[17] | 胡海青, 张琅, 张道宏. 供应链金融视角下的中小企业信用风险评估研究——基于SVM与BP神经网络的比较研究[J]. 管理评论, 2012, 24(11): 70-80. |
[18] | 彭治文, 陈晓亮, 朱珈辰, 等. 基于PSO-BP神经网络的游泳池式反应堆堆芯功率调节系统优化研究[J]. 核动力工程, 2024, 45(4): 173-180. |
[19] | He, Y., Zhao, Z., Zhu, Q., Liu, T., Zhang, Q., Yang, W., et al. (2023) An Integrated Neural Network Method for Landslide Susceptibility Assessment Based on Time-Series InSAR Deformation Dynamic Features. International Journal of Digital Earth, 17, Article 2295408. https://doi.org/10.1080/17538947.2023.2295408 |
[20] | Ling, X., Zhu, Y., Ming, D., Chen, Y., Zhang, L. and Du, T. (2022) Feature Engineering of Geohazard Susceptibility Analysis Based on the Random Forest Algorithm: Taking Tianshui City, Gansu Province, as an Example. Remote Sensing, 14, Article 5658. https://doi.org/10.3390/rs14225658 |
[21] | 王佳妮, 王云琦, 李耀明, 等. 基于信息量模型的滑坡灾害易发性评价——以重庆市为例[J]. 中国水土保持科学(中英文), 2023, 21(6): 53-62. |
[22] | 李怡静, 胡奇超, 刘华赞, 等. 耦合信息量和Logistic回归模型的滑坡易发性评价[J]. 人民长江, 2021, 52(6): 95-102. |
[23] | Wu, H., Xiong, D., Zhang, X., Zhang, B., He, H., Pang, Y., et al. (2024) Substantial Reduction in Sediment Yield after Check Dams in the Daliang Mountain Region, Southwest China: Insights from Sediment Fingerprinting in a Debris Flow-Prone Catchment. Journal of Hydrology: Regional Studies, 54, Article 101848. https://doi.org/10.1016/j.ejrh.2024.101848 |
[24] | Liu, H., Li, M., Yuan, M., Li, B. and Jiang, X. (2022) A Fine Subsidence Information Extraction Model Based on Multi-Source Inversion by Integrating InSAR and Leveling Data. Natural Hazards, 114, 2839-2854. https://doi.org/10.1007/s11069-022-05494-6 |