全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于QAA算法的近岸和内陆水域固有光学量反演
Inherent Optical Properties Inversion Coastal and Inland Waters Based on QAA Algorithm

DOI: 10.12677/gser.2025.141016, PP. 142-156

Keywords: 半分析算法,固有光学量,Landsat-8 OLI,近岸和内陆水域
Semi-Analysis Algorithm
, Inherent Optical Properties, Landsat-8 OLI, Coastal and Inland Water

Full-Text   Cite this paper   Add to My Lib

Abstract:

水资源在人类的生活环境中起着十分重要的作用,固有光学特性(IOPs)作为反映水生生态环境的重要因素可以使用QAAs算法进行估算。然而,大多数算法依赖412 nm波段估算水组分吸收系数。新半分析算法(QAA-LN)基于遥感反射率比值估算内陆和近岸水体的IOPs。该算法主要由两个部分组成。首先,选择常见的665 nm波段作为参考波段反演总吸收系数a和后向散射系数bbp。其次,通过490 nm和665 nm波段遥感反射率比值计算浮游植物吸收系数(aph)和颗粒和有色溶解有机物(adg)。使用收集的近岸和内陆水域数据集对模型进行评估,a (λ)、bbp (λ)、aph (λ)和adg (λ)的平均绝对误差(MAE)分别为0.20 m1、0.18 m1、0.19 m1、0.28 m1,结果表现良好。还将新算法用于实测数据匹配的Landsat-8 OLI卫星数据,也能展现出较好的性能,并应用到澳大利亚Hume水库。QAA-LN有潜力作为一种简单有效的算法,未来将扩展到其他卫星监测全球内陆和近岸水域IOPs的变化。
Water resources play a crucial role in human living environments, and inherent optical properties (IOPs) serve as important indicators of aquatic ecological conditions that can be estimated using QAA algorithms. However, most algorithms rely on the absorption coefficients of water constituents estimated at the 412 nm wavelength band. The new semi-analytical algorithm (QAA-LN) estimates IOPs for inland and coastal waters based on the ratio of remote sensing reflectance. This method consists of two main components. Firstly, it selects the commonly used 665 nm band as a reference to retrieve the total absorption coefficient (a) and the backscattering coefficient (bbp). Secondly, it calculates phytoplankton absorption coefficient (aph) and the absorption by particles and colored dissolved organic matter (adg) using the ratio of remote sensing reflectance at 490 nm and 665 nm. The model was evaluated using the collected coastal and inland water data sets. The mean absolute error (MAE) of a (λ), bbp (λ), aph (λ) and adg (λ) were 0.20 m1, 0.18 m1, 0.19 m1, and 0.28 m1, indicating satisfactory performance. The new algorithm was also applied to the Landsat 8 OLI satellite data in conjunction with the measured data, demonstrating favorable performance, particularly in its application to the Hume Lake in Australia. QAA-LN has the potential to serve as a simple and effective algorithm, with plans for future expansion to monitor changes in IOPs of global inland and coastal

References

[1]  Werdell, P.J., McKinna, L.I.W., Boss, E., Ackleson, S.G., Craig, S.E., Gregg, W.W., et al. (2018) An Overview of Approaches and Challenges for Retrieving Marine Inherent Optical Properties from Ocean Color Remote Sensing. Progress in Oceanography, 160, 186-212.
https://doi.org/10.1016/j.pocean.2018.01.001
[2]  肖海, 陈铸, 徐思源, 等. 基于Sentinel-2卫星数据的城市湖泊湿地叶绿素a及总悬浮物浓度定量监测分析——以长沙市松雅湖为例[J]. 国土资源导刊, 2024(1): 129-134.
[3]  Jiang, D., Matsushita, B., Pahlevan, N., Gurlin, D., Fichot, C.G., Harringmeyer, J., et al. (2023) Estimating the Concentration of Total Suspended Solids in Inland and Coastal Waters from Sentinel-2 MSI: A Semi-Analytical Approach. ISPRS Journal of Photogrammetry and Remote Sensing, 204, 362-377.
https://doi.org/10.1016/j.isprsjprs.2023.09.020
[4]  Lee, Z.P., Carder, K.L., Peacock, T.G., Davis, C.O. and Mueller, J.L. (1996) Method to Derive Ocean Absorption Coefficients from Remote-Sensing Reflectance. Applied Optics, 35, Article No. 453.
https://doi.org/10.1364/ao.35.000453
[5]  Allison, D.B., Stramski, D. and Mitchell, B.G. (2010) Seasonal and Interannual Variability of Particulate Organic Carbon within the Southern Ocean from Satellite Ocean Color Observations. Journal of Geophysical Research: Oceans, 115, C06002.
https://doi.org/10.1029/2009jc005347
[6]  Lee, Z.P. (2006) Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. IOCCG, 126 p.
[7]  Zhang, X., Huot, Y., Bricaud, A. and Sosik, H.M. (2015) Inversion of Spectral Absorption Coefficients to Infer Phytoplankton Size Classes, Chlorophyll Concentration, and Detrital Matter. Applied Optics, 54, Article No. 5805.
https://doi.org/10.1364/ao.54.005805
[8]  谢飞, 郭子祺, 田野, 等. 基于QAA算法的昆承湖固有光学量反演模型[J]. 遥感技术与应用, 2015, 30(2): 242-250.
[9]  邓智天, 孙永华, 邱琦, 等. 基于QAA算法的辽河口悬浮物浓度遥感反演[J]. 首都师范大学学报(自然科学版), 2019, 40(6): 75-82.
[10]  宫丽娇, 黄珏, 吴铭. 北冰洋固有光学特性遥感反演研究[J]. 无线电工程, 2021, 51(12): 1555-1566.
[11]  Pitarch, J. and Vanhellemont, Q. (2021) The QAA-RGB: A Universal Three-Band Absorption and Backscattering Retrieval Algorithm for High Resolution Satellite Sensors. Development and Implementation in Acolite. Remote Sensing of Environment, 265, Article ID: 112667.
https://doi.org/10.1016/j.rse.2021.112667
[12]  郝艳玲, 曹文熙, 崔廷伟, 等. 基于半分析算法的赤潮水体固有光学性质反演[J]. 海洋学报(中文版), 2011, 33(1): 52-65.
[13]  段化杰, 邓正栋, 邓非凡, 等. 基于QAA模型的岱海悬浮物浓度遥感反演[J]. 环境工程, 2018, 36(11): 147-151+157.
[14]  Xue, K., Boss, E., Ma, R. and Shen, M. (2019) Algorithm to Derive Inherent Optical Properties from Remote Sensing Reflectance in Turbid and Eutrophic Lakes. Applied Optics, 58, Article No. 8549.
https://doi.org/10.1364/ao.58.008549
[15]  Chu, Q., Zhang, Y., Ma, R., Hu, M. and Jing, Y. (2020) Modis-Based Remote Estimation of Absorption Coefficients of an Inland Turbid Lake in China. Remote Sensing, 12, Article No. 1940.
https://doi.org/10.3390/rs12121940
[16]  Chen, S. and Zhang, T. (2015) Evaluation of a QAA-Based Algorithm Using MODIS Land Bands Data for Retrieval of IOPS in the Eastern China Seas. Optics Express, 23, Article No. 13953.
https://doi.org/10.1364/oe.23.013953
[17]  Joshi, I.D. and D’Sa, E.J. (2018) An Estuarine-Tuned Quasi-Analytical Algorithm (QAA-V): Assessment and Application to Satellite Estimates of SPM in Galveston Bay Following Hurricane Harvey. Biogeosciences, 15, 4065-4086.
https://doi.org/10.5194/bg-15-4065-2018
[18]  Lee, Z.P., Carder, K.L., Steward, R.G., Peacock, T.G., Davis, C.O. and Patch, J.S. (1998) An Empirical Algorithm for Light Absorption by Ocean Water Based on Color. Journal of Geophysical Research: Oceans, 103, 27967-27978.
https://doi.org/10.1029/98jc01946
[19]  Loisel, H., Stramski, D., Mitchell, B.G., Fell, F., Fournier-Sicre, V., Lemasle, B., et al. (2001) Comparison of the Ocean Inherent Optical Properties Obtained from Measurements and Inverse Modeling. Applied Optics, 40, Article No. 2384.
https://doi.org/10.1364/ao.40.002384
[20]  O’Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., et al. (1998) Ocean Color Chlorophyll Algorithms for Seawifs. Journal of Geophysical Research: Oceans, 103, 24937-24953.
https://doi.org/10.1029/98jc02160
[21]  Wei, J., Lee, Z., Ondrusek, M., Mannino, A., Tzortziou, M. and Armstrong, R. (2016) Spectral Slopes of the Absorption Coefficient of Colored Dissolved and Detrital Material Inverted from UV‐Visible Remote Sensing Reflectance. Journal of Geophysical Research: Oceans, 121, 1953-1969.
https://doi.org/10.1002/2015jc011415
[22]  Lee, Z., Carder, K., Arnone, R. and He, M. (2007) Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors, 7, 3428-3441.
https://doi.org/10.3390/s7123428
[23]  Najah, A. and Al-Shehhi, M.R. (2021) Performance of the Ocean Color Algorithms: QAA, GSM, and GIOP in Inland and Coastal Waters. Remote Sensing in Earth Systems Sciences, 4, 235-248.
https://doi.org/10.1007/s41976-022-00068-3
[24]  裴亮, 潘丽. 基于Landsat8卫星OLI影像的合肥市水体信息提取方法研究[J]. 测绘与空间地理信息, 2018, 41(9): 143-146.
[25]  郭松涛, 邢帅, 张国平, 等. 异构卫星遥感数据融合的水深反演模型[J]. 测绘通报, 2024(5): 19-23.
[26]  张琳敏, 梅格致, 刘明亮, 等. 千岛湖水体表层温度遥感估算方法对比[J]. 遥感学报, 2024, 28(8): 2113-2130.
[27]  吕娜, 郭梦京, 赵馨, 等. 内陆淡水湖博斯腾湖水质遥感反演及时空演变特征[J]. 干旱区地理, 2024, 47(6): 953-966.
[28]  Casey, K.A., Rousseaux, C.S., Gregg, W.W., Boss, E., Chase, A.P., Craig, S.E., et al. (2020) A Global Compilation of in Situ Aquatic High Spectral Resolution Inherent and Apparent Optical Property Data for Remote Sensing Applications. Earth System Science Data, 12, 1123-1139.
https://doi.org/10.5194/essd-12-1123-2020
[29]  Qing, S., Cui, T., Lai, Q., Bao, Y., Diao, R., Yue, Y., et al. (2021) Improving Remote Sensing Retrieval of Water Clarity in Complex Coastal and Inland Waters with Modified Absorption Estimation and Optical Water Classification Using Sentinel-2 MSI. International Journal of Applied Earth Observation and Geoinformation, 102, Article ID: 102377.
https://doi.org/10.1016/j.jag.2021.102377
[30]  Drayson, N., Anstee, J., Botha, H., Kerrisk, G., Ford, P., Wojtasiewicz, B., et al. (2022) Australian Aquatic Bio-Optical Dataset with Applications for Satellite Calibration, Algorithm Development and Validation. Data in Brief, 44, Article ID: 108489.
https://doi.org/10.1016/j.dib.2022.108489
[31]  Vanhellemont, Q. and Ruddick, K. (2018) Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sensing of Environment, 216, 586-597.
https://doi.org/10.1016/j.rse.2018.07.015
[32]  Kowalczuk, P., Olszewski, J., Darecki, M. and Kaczmarek, S. (2005) Empirical Relationships between Coloured Dissolved Organic Matter (CDOM) Absorption and Apparent Optical Properties in Baltic Sea Waters. International Journal of Remote Sensing, 26, 345-370.
https://doi.org/10.1080/01431160410001720270
[33]  吴月圆, 舒立福, 王明玉. 近年澳大利亚森林火灾综述[J]. 温带林业研究, 2024, 7(1): 42-46.
[34]  孙军, 薛冰. 全球气候变化下的海洋浮游植物多样性[J]. 生物多样性, 2016, 24(7): 739-747.
[35]  Ma, Y., Zhang, H., Li, X., Wang, J., Cao, W., Li, D., et al. (2021) An Exponential Algorithm for Bottom Reflectance Retrieval in Clear Optically Shallow Waters from Multispectral Imagery without Ground Data. Remote Sensing, 13, Article No. 1169.
https://doi.org/10.3390/rs13061169
[36]  Li, L., Li, L. and Song, K. (2015) Remote Sensing of Freshwater Cyanobacteria: An Extended IOP Inversion Model of Inland Waters (IIMIW) for Partitioning Absorption Coefficient and Estimating Phycocyanin. Remote Sensing of Environment, 157, 9-23.
https://doi.org/10.1016/j.rse.2014.06.009
[37]  Maritorena, S., Siegel, D.A. and Peterson, A.R. (2002) Optimization of a Semianalytical Ocean Color Model for Global-Scale Applications. Applied Optics, 41, Article No. 2705.
https://doi.org/10.1364/ao.41.002705
[38]  Garver, S.A. and Siegel, D.A. (1997) Inherent Optical Property Inversion of Ocean Color Spectra and Its Biogeochemical Interpretation: 1. Time Series from the Sargasso Sea. Journal of Geophysical Research: Oceans, 102, 18607-18625.
https://doi.org/10.1029/96jc03243
[39]  Lee, Z., Carder, K.L. and Arnone, R.A. (2002) Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters. Applied Optics, 41, 5755-5772.
https://doi.org/10.1364/ao.41.005755
[40]  Liu, G., Li, L., Song, K., Li, Y., Lyu, H., Wen, Z., et al. (2020) An Olci-Based Algorithm for Semi-Empirically Partitioning Absorption Coefficient and Estimating Chlorophyll a Concentration in Various Turbid Case-2 Waters. Remote Sensing of Environment, 239, Article ID: 111648.
https://doi.org/10.1016/j.rse.2020.111648
[41]  Zeng, S., Lei, S., Li, Y., Lyu, H., Xu, J., Dong, X., et al. (2020) Retrieval of Secchi Disk Depth in Turbid Lakes from GOCI Based on a New Semi-Analytical Algorithm. Remote Sensing, 12, Article No. 1516.
https://doi.org/10.3390/rs12091516
[42]  Xue, K., Ma, R., Duan, H., Shen, M., Boss, E. and Cao, Z. (2019) Inversion of Inherent Optical Properties in Optically Complex Waters Using Sentinel-3a/Olci Images: A Case Study Using China’s Three Largest Freshwater Lakes. Remote Sensing of Environment, 225, 328-346.
https://doi.org/10.1016/j.rse.2019.03.006
[43]  Duan, H., Ma, R., Simis, S.G.H. and Zhang, Y. (2012) Validation of MERIS Case-2 Water Products in Lake Taihu, China. GIScience & Remote Sensing, 49, 873-894.
https://doi.org/10.2747/1548-1603.49.6.873
[44]  Yang, W., Matsushita, B., Chen, J., Yoshimura, K. and Fukushima, T. (2013) Retrieval of Inherent Optical Properties for Turbid Inland Waters from Remote-Sensing Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 51, 3761-3773.
https://doi.org/10.1109/tgrs.2012.2220147
[45]  Hoogenboom, H.J., Dekker, A.G. and Althuis, I.A. (1998) Simulation of AVIRIS Sensitivity for Detecting Chlorophyll over Coastal and Inland Waters. Remote Sensing of Environment, 65, 333-340.
https://doi.org/10.1016/s0034-4257(98)00042-x
[46]  Watanabe, F., Mishra, D.R., Astuti, I., Rodrigues, T., Alcântara, E., Imai, N.N., et al. (2016) Parametrization and Calibration of a Quasi-Analytical Algorithm for Tropical Eutrophic Waters. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 28-47.
https://doi.org/10.1016/j.isprsjprs.2016.08.009
[47]  Nagamani, P.V., Chauhan, P. and Sanwlani, N. (2011) Comparison of Inherent Optical Properties (Iops) in Open and Coastal Waters of Arabian Sea Using In-Situ Bio-Optical Data. Journal of the Indian Society of Remote Sensing, 39, 455-462.
https://doi.org/10.1007/s12524-011-0100-8
[48]  Huang, J., Chen, L., Chen, X. and Song, Q. (2013) Validation of Semi-Analytical Inversion Models for Inherent Optical Properties from Ocean Color in Coastal Yellow Sea and East China Sea. Journal of Oceanography, 69, 713-725.
https://doi.org/10.1007/s10872-013-0202-8
[49]  Mishra, S., Mishra, D.R. and Lee, Z. (2014) Bio-Optical Inversion in Highly Turbid and Cyanobacteria-Dominated Waters. IEEE Transactions on Geoscience and Remote Sensing, 52, 375-388.
https://doi.org/10.1109/tgrs.2013.2240462

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133