|
松花江流域城市碳收支时空差异与碳补偿量化研究
|
Abstract:
碳收支和碳补偿分区的研究,对于制定适应各区域低碳发展策略,推动区域生态环境协同治理,实现可持续发展具有重要意义。本文以松花江流域28个城市及自治州为研究区,通过测算该流域内城市的碳收支及碳补偿金额并结合生态承载力系数和经济贡献系数,研究松花江流域城市碳收支的时空分异规律以及碳补偿分区,研究显示:(1) 松花江流域城市碳吸收情况以21 × 107 t位为平衡点上下浮动,在20年间呈现总量减少,减量较小,整体稳定的特点;碳排放呈现阶段式增长的趋势,分为2000~2010年快速增长阶段,和2010~2020年平稳增长阶段。(2) 2000年~2020年松花江流域各城市碳收支地域分异明显。碳排放主要集中于东北部地区,碳吸收主要集中于西北部和哈尔滨市。(3) 根据碳补偿量化分析,本文将研究区划分为5类碳补偿空间优化区,并为不同类型区的绿色低碳发展规划提出建议。
The study of carbon budget and carbon compensation zoning is of great significance for specifying low-carbon development strategies to adapt to various regions, promoting regional ecological and environmental collaborative governance, and realizing sustainable development. This paper takes 28 cities and autonomous prefectures in the Songhua River Basin as the research area. By calculating the carbon budget and carbon compensation amount of cities in the basin and combining the ecological carrying capacity coefficient and economic contribution coefficient, the paper studies the spatial-temporal differentiation of the carbon budget of cities in the Songhua River basin and the carbon compensation zoning. The research shows: (1) The carbon uptake of cities in the Songhua River basin fluctuated up and down at the equilibrium point of 21 × 107 t, showing the characteristics of total decrease, small reduction and overall stability in the past 20 years; Carbon emissions showed a stage-like growth trend, which was divided into a rapid growth stage from 2000 to 2010 and a steady growth stage from 2010 to 2020. (2) The regional differences in carbon budget among cities in the Songhua River Basin from 2000 to 2020 are obvious. The carbon emission is mainly concentrated in the northeast, and the carbon absorption is mainly concentrated in the northwest and Harbin city. (3) According to the quantitative analysis of carbon compensation, this paper divides the study area into 5 types of carbon compensation spatial optimization areas, and puts forward suggestions for the green and low-carbon development planning of different types of areas.
[1] | 四友, 杨宇. 基于主体功能区的京津冀城市群碳收支时空分异与碳补偿分区[J]. 地理学报, 2022, 77(3): 679-696. |
[2] | 明娟, 李强, 周文瑞. 碳中和视域下黄河流域碳生态补偿研究[J]. 人民黄河, 2021, 43(12): 5-11. |
[3] | 唐菁, 曾庆均, 刘浩. 中国农业碳补偿率的动态演进、区域差异及空间收敛性研究[J]. 农业技术经济, 2024(1): 54-74. |
[4] | 尚杰, 杨滨键. 种植业碳源、碳汇测算与净碳汇影响因素动态分析: 山东例证[J]. 改革, 2019(6): 123-134. |
[5] | 彭云峰, 常锦峰, 赵霞, 等. 中国草地生态系统固碳能力及其提升途径[J]. 中国科学基金, 2023, 37(4): 587-602. |
[6] | 薛秀峰, 张仕超, 张煊赟, 等. 近24年三峡水库库尾重庆市江津区耕地利用碳汇及碳足迹变化[J]. 中国农业资源与区划, 2024, 45(1): 139-149. |
[7] | 晋涛, 易媛媛. “双碳”目标与基于自然的解决方案: 森林碳汇的潜力和政策需求[J]. 农业经济问题, 2022, 43(9): 11-23. |
[8] | 杜之利, 苏彤, 葛佳敏, 等. 碳中和背景下的森林碳汇及其空间溢出效应[J]. 经济研究, 2021, 56(12): 187-202. |
[9] | 李波, 刘雪琪, 王昆. 中国农地利用结构变化的碳效应及时空演进趋势研究[J]. 中国土地科学, 2018, 32(3): 43-51. |
[10] | 龚荣发, 曾维忠. 政府推动背景下森林碳汇项目农户参与的制约因素研究[J]. 资源科学, 2018, 40(5): 1073-1083. |
[11] | 邱高会, 丁明刚. 生态文明视域下低碳发展水平评价及预测——以四川省为例[J]. 生态经济, 2016, 32(11): 204-209. |
[12] | 刘宜卓, 石悦泽, 荆克迪. “双碳”目标下黄河流域九省区横向区域碳补偿机制构建研究[J]. 生态经济, 2024, 40(1): 29-37. |
[13] | 赵荣钦, 刘英, 马林, 等. 基于碳收支核算的河南省县域空间横向碳补偿研究[J]. 自然资源学报, 2016, 31(10): 1675-1687. |
[14] | 袁凯华, 张苗, 甘臣林, 等. 基于碳减排目标的省域碳生态补偿研究[J]. 长江流域资源与环境, 2019, 28(1): 21-29. |
[15] | 张亚龙, 张海峰, 杨雪梅. 黄河流域城市碳收支时空差异与碳补偿分区研究[J]. 世界地理研究, 2024, 33(3): 116-130. |
[16] | Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., et al. (2020) County-Level CO2 Emissions and Sequestration in China during 1997-2017. Scientific Data, 7, Article No. 391. https://doi.org/10.1038/s41597-020-00736-3 |
[17] | 冯薇, 赵荣钦, 谢志祥, 等. 碳中和目标下土地利用碳排放效率及其时空格局——以黄河流域72个地级市为例[J]. 中国土地科学, 2023, 37(1): 102-113. |
[18] | 谢鸿宇, 陈贤生, 林凯荣, 等. 基于碳循环的化石能源及电力生态足迹[J]. 生态学报, 2008, 28(4): 1729-1735. |
[19] | 陈帝伯, 魏伟, 周俊菊, 等. 中国省域碳源/碳汇强度及碳盈亏的空间演变[J]. 经济地理, 2023, 43(1): 159-168. |
[20] | 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2): 463-469. |
[21] | 赖力. 中国土地利用的碳排放效应研究[D]: [博士学位论文]. 南京: 南京大学, 2010. |
[22] | 邵帅, 张可, 豆建民. 经济集聚的节能减排效应: 理论与中国经验[J]. 管理世界, 2019, 35(1): 36-60, 226. |
[23] | Shan, Y., Guan, Y., Hang, Y., Zheng, H., Li, Y., Guan, D., et al. (2022) City-Level Emission Peak and Drivers in China. Science Bulletin, 67, 1910-1920. https://doi.org/10.1016/j.scib.2022.08.024 |
[24] | Shan, Y., Guan, D., Hubacek, K., Zheng, B., Davis, S.J., Jia, L., et al. (2018) City-Level Climate Change Mitigation in China. Science Advances, 4, eaaq0390. https://doi.org/10.1126/sciadv.aaq0390 |
[25] | Shan, Y., Guan, D., Liu, J., Mi, Z., Liu, Z., Liu, J., et al. (2017) Methodology and Applications of City Level CO2 Emission Accounts in China. Journal of Cleaner Production, 161, 1215-1225. https://doi.org/10.1016/j.jclepro.2017.06.075 |
[26] | Shan, Y., Liu, J., Liu, Z., Shao, S. and Guan, D. (2019) An Emissions-Socioeconomic Inventory of Chinese Cities. Scientific Data, 6, Article No. 190027. https://doi.org/10.1038/sdata.2019.27 |
[27] | 李乃强, 徐贵阳. 基于自然间断点分级法的土地利用数据网格化分析[J]. 测绘通报, 2020(4): 106-110, 156. |