全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能技术在帕金森病诊治中的应用现状及展望
Current Status and Outlook of the Application of Artificial Intelligence Technology in the Diagnosis and Treatment of Parkinson’s Disease

DOI: 10.12677/ijpn.2025.141001, PP. 1-7

Keywords: 帕金森病,人工智能,综述
Parkinson Disease
, Artificial Intelligence, Review

Full-Text   Cite this paper   Add to My Lib

Abstract:

帕金森病是一种神经系统退行性疾病,给患者的生活带来了重大影响。而近年来,人工智能技术的发展为帕金森病的诊治提供了新的机会和挑战。本文将从帕金森病的诊断、监测和评估、治疗方法三个方面切入,对不同人工智能技术在帕金森病诊治中的应用进行总结,了解其原理、分析其应用现状及存在的问题,并对未来的发展进行展望。
Parkinson’s disease is a neurodegenerative disease that brings significant impact on patients’ lives. And in recent years, the development of artificial intelligence technology has provided new opportunities and challenges for the diagnosis and treatment of Parkinson’s disease. In this paper, we will summarize the application of various AI technologies in the diagnosis and treatment of Parkinson’s disease from three aspects, namely, diagnosis, monitoring and evaluation, and treatment methods, in order to understand the principles, analyze the current status of their application and the existing problems, and to look forward to the future development.

References

[1]  Thomson, R. (2015) Disease Briefing: Parkinson’s Disease. Journal of International Pharmaceutical Research, 3, 338-345.
[2]  Chaudhuri, K.R., Healy, D.G. and Schapira, A.H. (2006) Non-motor Symptoms of Parkinson’s Disease: Diagnosis and Management. The Lancet Neurology, 5, 235-245.
https://doi.org/10.1016/s1474-4422(06)70373-8
[3]  Paul, S., Maindarkar, M., Saxena, S., Saba, L., Turk, M., Kalra, M., et al. (2022) Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson’s Disease: A Narrative Review. Diagnostics, 12, Article 166.
https://doi.org/10.3390/diagnostics12010166
[4]  Isaacs, D. (2020) Artificial Intelligence in Health Care. Journal of Paediatrics and Child Health, 56, 1493-1495.
https://doi.org/10.1111/jpc.14828
[5]  Al-Wahishi, A., Belal, N. and Ghanem, N. (2021) Diagnosis of Parkinson’s Disease by Deep Learning Techniques Using Handwriting Dataset. In: Thampi, S.M., Krishnan, S., Hegde, R.M., Ciuonzo, D., Hanne, T. and Kannan R.J., Eds., Advances in Signal Processing and Intelligent Recognition Systems, Springer, 131-143.
https://doi.org/10.1007/978-981-16-0425-6_10
[6]  Jaichandran, R., Leelavathy, S., Usha, K.S., Goutham, K., Mevin, J.M. and Jomon, B. (2020) Machine Learning Technique Based Parkinson’s Disease Detection from Spiral and Voice Inputs. European Journal of Molecular & Clinical Medicine, 7, 2815-2820.
[7]  Tsanas, A., Little, M.A., McSharry, P.E., Spielman, J. and Ramig, L.O. (2012) Novel Speech Signal Processing Algorithms for High-Accuracy Classification of Parkinson’s Disease. IEEE Transactions on Biomedical Engineering, 59, 1264-1271.
https://doi.org/10.1109/tbme.2012.2183367
[8]  Little, M., McSharry, P., Hunter, E., Spielman, J. and Ramig, L. (2008) Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s Disease. Nature Precedings.
https://doi.org/10.1038/npre.2008.2298.1
[9]  Iseki, C., Hayasaka, T., Yanagawa, H., Komoriya, Y., Kondo, T., Hoshi, M., et al. (2023) Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an Ios Application (TDPT-GT). Sensors, 23, Article 6217.
https://doi.org/10.3390/s23136217
[10]  Postuma, R.B., Berg, D., Stern, M., Poewe, W., Olanow, C.W., Oertel, W., et al. (2015) MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Movement Disorders, 30, 1591-1601.
https://doi.org/10.1002/mds.26424
[11]  Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez Martin, P., et al. (2008) Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Movement Disorders, 23, 2129-2170.
[12]  Monje, M.H.G., Domínguez, S., Vera-Olmos, J., Antonini, A., Mestre, T.A., Malpica, N., et al. (2021) Remote Evaluation of Parkinson’s Disease Using a Conventional Webcam and Artificial Intelligence. Frontiers in Neurology, 12, Article 742654.
https://doi.org/10.3389/fneur.2021.742654
[13]  Ho, A.K., Iansek, R., Marigliani, C., Bradshaw, J.L. and Gates, S. (1999) Speech Impairment in a Large Sample of Patients with Parkinson’s Disease. Behavioural Neurology, 11, 131-137.
https://doi.org/10.1155/1999/327643
[14]  Celik, G. and Başaran, E. (2023) Proposing a New Approach Based on Convolutional Neural Networks and Random Forest for the Diagnosis of Parkinson’s Disease from Speech Signals. Applied Acoustics, 211, Article ID: 109476.
https://doi.org/10.1016/j.apacoust.2023.109476
[15]  Zhang, H., Wang, A., Li, D. and Xu, W. (2018) DeepVoice: A Voiceprint-Based Mobile Health Framework for Parkinson’s Disease Identification. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, 4-7 March 2018, 214-217.
https://doi.org/10.1109/bhi.2018.8333407
[16]  Quan, C., Ren, K. and Luo, Z. (2021) A Deep Learning Based Method for Parkinson’s Disease Detection Using Dynamic Features of Speech. IEEE Access, 9, 10239-10252.
https://doi.org/10.1109/access.2021.3051432
[17]  Nijhawan, R., Kumar, M., Arya, S., Mendirtta, N., Kumar, S., Towfek, S.K., et al. (2023) A Novel Artificial-Intelligence-Based Approach for Classification of Parkinson’s Disease Using Complex and Large Vocal Features. Biomimetics, 8, Article 351.
https://doi.org/10.3390/biomimetics8040351
[18]  Goetz, C.G. (2011) The History of Parkinson’s Disease: Early Clinical Descriptions and Neurological Therapies. Cold Spring Harbor Perspectives in Medicine, 1, a008862.
https://doi.org/10.1101/cshperspect.a008862
[19]  Madeley, P., Ellis, A.W. and Mindham, R.H.S. (1995) Facial Expressions and Parkinson’s Disease. Behavioural Neurology, 8, 115-119.
https://doi.org/10.1155/1995/750425
[20]  Bandini, A., Orlandi, S., Escalante, H.J., Giovannelli, F., Cincotta, M., Reyes-Garcia, C.A., et al. (2017) Analysis of Facial Expressions in Parkinson’s Disease through Video-Based Automatic Methods. Journal of Neuroscience Methods, 281, 7-20.
https://doi.org/10.1016/j.jneumeth.2017.02.006
[21]  Langevin, R., Ali, M.R., Sen, T., Snyder, C., Myers, T., Dorsey, E.R., et al. (2019) The PARK Framework for Automated Analysis of Parkinson’s Disease Characteristics. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3, 1-22.
[22]  Jin, B., Qu, Y., Zhang, L. and Gao, Z. (2020) Diagnosing Parkinson Disease through Facial Expression Recognition: Video Analysis. Journal of Medical Internet Research, 22, e18697.
https://doi.org/10.2196/18697
[23]  Sundermeyer, M., Schlüter, R. and Ney, H. (2012) LSTM Neural Networks for Language Modeling. Thirteenth Annual Conference of the International Speech Communication Association, Portland, 9-13 September 2012.
[24]  Li, M.H., Mestre, T.A., Fox, S.H. and Taati, B. (2018) Vision-Based Assessment of Parkinsonism and Levodopa-Induced Dyskinesia with Pose Estimation. Journal of NeuroEngineering and Rehabilitation, 15, Article No. 97.
https://doi.org/10.1186/s12984-018-0446-z
[25]  Asci, F., Vivacqua, G., Zampogna, A., D’Onofrio, V., Mazzeo, A. and Suppa, A. (2022) Wearable Electrochemical Sensors in Parkinson’s Disease. Sensors, 22, Article 951.
https://doi.org/10.3390/s22030951
[26]  Suppa, A., Kita, A., Leodori, G., Zampogna, A., Nicolini, E., Lorenzi, P., et al. (2017) L-Dopa and Freezing of Gait in Parkinson’s Disease: Objective Assessment through a Wearable Wireless System. Frontiers in Neurology, 8, Article 406.
https://doi.org/10.3389/fneur.2017.00406
[27]  Zampogna, A., Mileti, I., Martelli, F., Paoloni, M., Del Prete, Z., Palermo, E., et al. (2021) Early Balance Impairment in Parkinson’s Disease: Evidence from Robot-Assisted Axial Rotations. Clinical Neurophysiology, 132, 2422-2430.
https://doi.org/10.1016/j.clinph.2021.06.023
[28]  Zampogna, A., Mileti, I., Palermo, E., Celletti, C., Paoloni, M., Manoni, A., et al. (2020) Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. Sensors, 20, Article 3247.
https://doi.org/10.3390/s20113247
[29]  Zampogna, A., Manoni, A., Asci, F., Liguori, C., Irrera, F. and Suppa, A. (2020) Shedding Light on Nocturnal Movements in Parkinson’s Disease: Evidence from Wearable Technologies. Sensors, 20, Article 5171.
https://doi.org/10.3390/s20185171
[30]  Monje, M.H.G., Foffani, G., Obeso, J. and Sánchez-Ferro, Á. (2019) New Sensor and Wearable Technologies to Aid in the Diagnosis and Treatment Monitoring of Parkinson’s Disease. Annual Review of Biomedical Engineering, 21, 111-143.
https://doi.org/10.1146/annurev-bioeng-062117-121036
[31]  Pasluosta, C.F., Gassner, H., Winkler, J., Klucken, J. and Eskofier, B.M. (2015) An Emerging Era in the Management of Parkinson’s Disease: Wearable Technologies and the Internet of Things. IEEE Journal of Biomedical and Health Informatics, 19, 1873-1881.
https://doi.org/10.1109/jbhi.2015.2461555
[32]  Shamir, R.R., Dolber, T., Noecker, A.M., Walter, B.L. and McIntyre, C.C. (2015) Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson’s Disease. Brain Stimulation, 8, 1025-1032.
https://doi.org/10.1016/j.brs.2015.06.003
[33]  Vatansever, S., Schlessinger, A., Wacker, D., Kaniskan, H.Ü., Jin, J., Zhou, M., et al. (2020) Artificial Intelligence and Machine Learning‐Aided Drug Discovery in Central Nervous System Diseases: State‐of‐the‐Arts and Future Directions. Medicinal Research Reviews, 41, 1427-1473.
https://doi.org/10.1002/med.21764
[34]  Dorsey, E.R., Elbaz, A., Nichols, E., Abbasi, N., Abd-Allah, F., Abdelalim, A., et al. (2018) Global, Regional, and National Burden of Parkinson’s Disease, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 17, 939-953.
https://doi.org/10.1016/s1474-4422(18)30295-3
[35]  Singh, N., Pillay, V. and Choonara, Y.E. (2007) Advances in the Treatment of Parkinson’s Disease. Progress in Neurobiology, 81, 29-44.
https://doi.org/10.1016/j.pneurobio.2006.11.009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133