全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于信息量–随机森林模型的邛崃山系滑坡易发性评价
Evaluation of Landslide Susceptibility of the Qionglai Mountain Range Based on the Information-Entropy Random Forest Model

DOI: 10.12677/ag.2025.152024, PP. 226-240

Keywords: 邛崃山系,信息量,随机森林,易发性评价
Qionglai Mountain Range
, Information Volume, Random Forest, Vulnerability Assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前滑坡易发性评价中非灾害点赖于主观推测或随机选取,导致非灾害点辨识度较低,容易导致分析误差增大,进而影响模型的精度的问题,本文采用基于信息量法支持下的随机森林模型对邛崃山系进行滑坡易发性评价。经过大量统计研究与地质环境条件分析,选取高程、坡度、坡向、归一化植被指数、降雨量、岩组、距断层距离、距道路距离和距水系距离9个影响滑坡的因素进行分析,得出各评价指标权重。利用信息量模型进行易发性预评价和分级,从低易发区随机选取2373个非灾害点作为负样本点。然后通过随机森林模型获取滑坡易发性评价结果,并利用ArcGIS中的自然断点法对邛崃山系滑坡易发性结果进行分类,将研究区域划分为极低易发区(29.4%)、低易发区(30.5%)、中等易发区(20.6%)、高易发区(13.4%)、极高易发区(7.1%)五个等级区。并通过ROC曲线检验评价精度,结果显示模型AUC值为0.940,验证了信息量支持下的随机森林模型在邛崃山系滑坡易发性评价中具有较高的可信度。
In the current evaluation of landslide susceptibility, the identification of non-landslide points is often based on subjective estimation or random selection. This leads to low discernibility of non-landslide points, increasing analytical errors and affecting model accuracy. A random forest model supported by the information value method was adopted to evaluate landslide susceptibility in the Qionglai mountain system. Extensive statistical research and analysis of geological and environmental conditions were conducted. Nine factors affecting landslides were selected: elevation, slope, aspect, normalized vegetation index, rainfall, lithology, distance to fault, distance to road, and distance to water system. The weights of each evaluation index were determined. The information value model was used for preliminary susceptibility evaluation and classification. From low susceptibility areas, 2373 non-landslide points were randomly selected as negative sample points. Landslide susceptibility results were obtained using the random forest model. The natural break method in ArcGIS was employed to classify the results. The study area was divided into five susceptibility zones: very low susceptibility (29.4%), low susceptibility (30.5%), moderate susceptibility (20.6%), high susceptibility (13.4%), and very high susceptibility (7.1%). The evaluation accuracy was tested using the ROC curve. The results showed an AUC value of 0.940, verifying that the random forest model supported by the information value method has high reliability in evaluating landslide susceptibility in the Qionglai mountain system.

References

[1]  徐瑞池, 李秀珍, 胡凯衡, 等. 横断山区山地灾害的动态风险性评价[J]. 山地学报, 2020, 38(2): 222-230.
[2]  李炳元. 横断山区地貌区划[J]. 山地研究, 1989, 1(1): 13-20.
[3]  杜国梁, 张永双, 吕文明, 等. 基于加权信息量模型的藏东南地区滑坡易发性评价[J]. 灾害学, 2016, 31(2): 226-234
[4]  李怡飞. 革什扎河流域地质灾害易发性评价[D]: [硕士学位论文]. 成都: 成都理工大学, 2021.
[5]  余悠然. 基于GIS的古交市地质灾害分布特征与易发性评价[D]: [硕士学位论文]. 北京: 中国矿业大学, 2021.
[6]  支泽民. 横断山区西北部地质灾害易发性评价[D]: [硕士学位论文]. 西宁: 青海师范大学, 2021.
[7]  Guo, Z., Shi, Y., Huang, F., Fan, X. and Huang, J. (2021) Landslide Susceptibility Zonation Method Based on C5.0 Decision Tree and K-Means Cluster Algorithms to Improve the Efficiency of Risk Management. Geoscience Frontiers, 12, Article 101249.
https://doi.org/10.1016/j.gsf.2021.101249
[8]  He, Y., Xiong, J., Cheng, W., et al. (2022) Assessing the Risk Posed by Flash Floods to the Transportation Network in Southwestern China. Geocarto International, 37, 13210-13228.
https://doi.org/10.1080/10106049.2022.2076919
[9]  杨硕, 李德营, 严亮轩, 等. 基于随机森林模型的乌江高陡岸坡滑坡地质灾害易发性评价[J]. 安全与环境工程, 2021, 28(4): 131-138.
[10]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/a:1010933404324
[11]  Zhu, Z. and Zhang, Y. (2021) Flood Disaster Risk Assessment Based on Random Forest Algorithm. Neural Computing and Applications, 34, 3443-3455.
https://doi.org/10.1007/s00521-021-05757-6
[12]  管新邦. 云南省滑坡地质灾害危险性评价研究[D]: [博士学位论文]. 北京: 中国矿业大学, 2018.
[13]  李军, 周成虎. 基于栅格GIS滑坡风险评价方法中格网大小选取分析[J]. 遥感学报, 2003, 7(2): 86-92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133