|
数字经济的量化投资
|
Abstract:
中国数字经济的发展取得了显著成就,形成了独特的增长模式。本研究通过综合运用关联度分析与层次分析法,确立了影响数字经济发展的关键因素指标体系,并采用灰色关联度分析法和BP神经网络评估了未来资金投入对数字经济整体发展的影响。鉴于研究中面临的数据量庞大、获取难度高及可能存在的数据缺失等问题,研究团队构建了合理的指标体系,有效合并了同类项,确保了数据处理的准确性。该研究不仅深化了对数字经济影响因素的理解,也为相关政策制定和实践操作提供了科学依据与重要参考。
China has made remarkable achievements in the development of its digital economy, forming a unique growth model. In this study, the index system of key factors influencing the development of the digital economy is established by comprehensively using correlation analysis and analytic hierarchy process, and the impact of future capital investment on the overall development of the digital economy is evaluated by using the grey correlation analysis method and BP neural network. In view of the huge amount of data, the difficulty of obtaining and the possible lack of data in the research, the research team constructed a reasonable index system, effectively merged similar items, and ensured the accuracy of data processing. This study not only deepens the understanding of the influencing factors of the digital economy, but also provides a scientific basis and an important reference for relevant policy formulation and practical operation.
[1] | 马萌. MATLAB量化金融分析基础与实战[M]. 北京: 机械工业出版社, 2018. |
[2] | 朱波, 曾丽丹. 数字经济时代区域经济下行风险防范与应对: 基于GaR模型的实证分析[J]. 中国软科学, 2024(6): 90-100. |
[3] | 吴雪萍, 许贤丽. 新常态下金融与技术协同创新的实证研究——基于灰色关联度模型的分析[J]. 中小企业管理与科技, 2022(3): 59-61. |
[4] | 罗雨晴, 张舒娟. 基于PCC-BP神经网络模型的碳配额价格预测[J]. 科技创业月刊, 2023, 36(S1): 76-80. |
[5] | Zhang, X., Xu, N., Dai, W., et al. (2024) Turbofan Engine Health Prediction Model Based on ESO-BP Neural Network. Applied Sciences, 14, 1996. https://doi.org/10.3390/app14051996 |
[6] | 胡智涛, 郝立丽. 基于神经网络模型的中国碳中和股票收盘价预测[J]. 统计与咨询, 2023(5): 16-19. |
[7] | 肖奎喜. 我国开放式证券投资基金的业绩评价[D]: [博士学位论文]. 杭州: 浙江大学, 2005. |
[8] | 韩立强. 基于boosting模型的逆向投资策略研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019. |