|
单分子定位显微镜数据分析方法的研究进展
|
Abstract:
单分子定位显微镜(Single-Molecule Localization Microscopy, SMLM)是一种突破传统光学显微镜分辨率极限的重要技术,能够在纳米尺度下提供单分子分辨率的定位信息。这项技术广泛应用于生物学和材料科学领域,为揭示复杂生物结构和分子相互作用提供了前所未有的细节。然而,SMLM数据具有高度稀疏性、非均匀性以及高维度等独特特性,数据定量和解析方法尚未完全跟上这一技术的进步,导致其在实际应用中的数据分析面临诸多挑战。在SMLM数据分析中,主要难点包括:如何准确识别并量化分子位置,如何解析复杂的分子分布模式,如何从噪声数据中提取有意义的生物信息,以及如何高效处理海量数据以确保分析的速度与精度。这些难点极大限制了SMLM技术在高精度定量研究中的应用。近年来,针对这些挑战,研究者开发了多种分析方法,例如空间描述性统计(用于描述分子分布特征)、聚类和分割算法(用于识别分子聚集模式),以及几何分析方法(用于解析分子结构形态),深度学习。这些方法在提高定位精度、揭示空间分布规律以及量化复杂生物结构等方面取得了显著进展。然而,现有方法仍存在一定的局限性,例如在处理大规模数据集时计算效率不足、对复杂分布模式的解析能力有限,以及对噪声和伪影的鲁棒性不足等问题。本文通过系统梳理SMLM数据分析的现有方法,总结了各方法的优势和适用场景,同时指出其局限性及改进方向。我们希望为研究者提供清晰的思路,帮助其根据研究目标选择最适合的分析策略,从而进一步提高SMLM数据分析的准确性和可靠性。
Single-Molecule Localization Microscopy (SMLM) is an important technique that breaks the resolution limit of traditional optical microscopy, and can provide single-molecule resolution localization information at the nanoscale. The technique is widely used in biology and materials science, providing unprecedented detail to reveal complex biological structures and molecular interactions. However, SMLM data has unique characteristics such as high sparsity, non-uniformity and high dimensionality, and data quantitative and analytical methods have not fully kept up with the progress of this technology, resulting in many challenges for data analysis in practical applications. In SMLM data analysis, the main difficulties include: how to accurately identify and quantify the molecular position, how to analyze complex molecular distribution patterns, how to extract meaningful biological information from noisy data, and how to efficiently process massive data to ensure the speed and accuracy of analysis. These difficulties greatly limit the application of SMLM technology in high-precision quantitative research. In recent years, a variety of analytical methods have been developed to address these challenges, such as spatial descriptive statistics (to describe molecular distribution characteristics), clustering and segmentation algorithms (to identify molecular aggregation patterns), geometric analysis methods (to analyze molecular structure morphology), and deep learning. These methods have made remarkable progress in improving localization accuracy, revealing spatial distribution laws, and quantifying complex biological structures. However, existing methods still have some limitations, such as insufficient computational efficiency in dealing with large-scale data sets,
[1] | 毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283-1307. |
[2] | 姚保利, 雷铭, 薛彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607-1618. |
[3] | 胡春光, 查日东, 凌秋雨, 等. 超分辨显微技术在活细胞中的应用与发展[J]. 红外与激光工程, 2017, 46(11): 1103002. |
[4] | Giessibl, F.J. (1995) Atomic Resolution of the Silicon (111)-(7 × 7) Surface by Atomic Force Microscopy. Science, 267, 68-71. https://doi.org/10.1126/science.267.5194.68 |
[5] | Browning, N.D., Chisholm, M.F. and Pennycook, S.J. (1993) Atomic-resolution Chemical Analysis Using a Scanning Transmission Electron Microscope. Nature, 366, 143-146. https://doi.org/10.1038/366143a0 |
[6] | Sohda, Y., Yamanashi, H., Fukuda, M., et al. (2008) Scanning Electron Microscope. Science, 183, 119. |
[7] | 安莎, 但旦, 于湘华, 等. 单分子定位超分辨显微成像技术研究进展及展望(特邀综述) [J]. 光子学报, 2020, 49(9): 0918001. |
[8] | Stephens, D.J. and Allan, V.J. (2003) Light Microscopy Techniques for Live Cell Imaging. Science, 300, 82-86. https://doi.org/10.1126/science.1082160 |
[9] | Czirók, A., Rupp, P.A., Rongish, B.J. and Little, C.D. (2002) Multi‐field 3D Scanning Light Microscopy of Early Embryogenesis. Journal of Microscopy, 206, 209-217. https://doi.org/10.1046/j.1365-2818.2002.01032.x |
[10] | Kobat, D., Horton, N.G. and Xu, C. (2011) In Vivo Two-Photon Microscopy to 1.6 mm Depth in Mouse Cortex. Journal of Biomedical Optics, 16, Article ID: 106014. https://doi.org/10.1117/1.3646209 |
[11] | Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E. and Selvin, P.R. (2003) Myosin V Walks Hand-over-Hand: Single Fluorophore Imaging with 1.5 nm Localization. Science, 300, 2061-2065. https://doi.org/10.1126/science.1084398 |
[12] | Aquino, D., Schönle, A., Geisler, C., Middendorff, C.v., Wurm, C.A., Okamura, Y., et al. (2011) Two-Color Nanoscopy of Three-Dimensional Volumes by 4Pi Detection of Stochastically Switched Fluorophores. Nature Methods, 8, 353-359. https://doi.org/10.1038/nmeth.1583 |
[13] | Pertsinidis, A., Zhang, Y. and Chu, S. (2010) Subnanometre Single-Molecule Localization, Registration and Distance Measurements. Nature, 466, 647-651. https://doi.org/10.1038/nature09163 |
[14] | Zheng, Q., Juette, M.F., Jockusch, S., Wasserman, M.R., Zhou, Z., Altman, R.B., et al. (2014) Ultra-Stable Organic Fluorophores for Single-Molecule Research. Chemical Society Reviews, 43, 1044-1056. https://doi.org/10.1039/c3cs60237k |
[15] | Shaner, N.C., Patterson, G.H. and Davidson, M.W. (2007) Advances in Fluorescent Protein Technology. Journal of Cell Science, 120, 4247-4260. https://doi.org/10.1242/jcs.005801 |
[16] | Lidke, K.A., Rieger, B., Jovin, T.M. and Heintzmann, R. (2005) Superresolution by Localization of Quantum Dots Using Blinking Statistics. Optics Express, 13, 7052-7062. https://doi.org/10.1364/opex.13.007052 |
[17] | Lincoln, R., Bossi, M.L., Remmel, M., D’Este, E., Butkevich, A.N. and Hell, S.W. (2022) A General Design of Caging-Group-Free Photoactivatable Fluorophores for Live-Cell Nanoscopy. Nature Chemistry, 14, 1013-1020. https://doi.org/10.1038/s41557-022-00995-0 |
[18] | Gould, T.J., Verkhusha, V.V. and Hess, S.T. (2009) Imaging Biological Structures with Fluorescence Photoactivation Localization Microscopy. Nature Protocols, 4, 291-308. https://doi.org/10.1038/nprot.2008.246 |
[19] | Dempsey, G.T., Bates, M., Kowtoniuk, W.E., Liu, D.R., Tsien, R.Y. and Zhuang, X. (2009) Photoswitching Mechanism of Cyanine Dyes. Journal of the American Chemical Society, 131, 18192-18193. https://doi.org/10.1021/ja904588g |
[20] | Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., et al. (1996) Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals. Nature, 383, 802-804. https://doi.org/10.1038/383802a0 |
[21] | Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-468. https://doi.org/10.1007/bf02956173 |
[22] | Mortensen, K.I., Churchman, L.S., Spudich, J.A. and Flyvbjerg, H. (2010) Optimized Localization Analysis for Single-Molecule Tracking and Super-Resolution Microscopy. Nature Methods, 7, 377-381. https://doi.org/10.1038/nmeth.1447 |
[23] | Rust, M.J., Bates, M. and Zhuang, X. (2006) Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (Storm). Nature Methods, 3, 793-796. https://doi.org/10.1038/nmeth929 |
[24] | Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., et al. (2008) Subdiffraction‐Resolution Fluorescence Imaging with Conventional Fluorescent Probes. Angewandte Chemie International Edition, 47, 6172-6176. https://doi.org/10.1002/anie.200802376 |
[25] | Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. (2006) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science, 313, 1642-1645. https://doi.org/10.1126/science.1127344 |
[26] | Ostersehlt, L.M., Jans, D.C., Wittek, A., Keller-Findeisen, J., Inamdar, K., Sahl, S.J., et al. (2022) DNA-Paint Minflux Nanoscopy. Nature Methods, 19, 1072-1075. https://doi.org/10.1038/s41592-022-01577-1 |
[27] | Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P. and Simmel, F.C. (2010) Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. Nano Letters, 10, 4756-4761. https://doi.org/10.1021/nl103427w |
[28] | Li, H. and Vaughan, J.C. (2018) Switchable Fluorophores for Single-Molecule Localization Microscopy. Chemical Reviews, 118, 9412-9454. https://doi.org/10.1021/acs.chemrev.7b00767 |
[29] | Hess, S.T., Girirajan, T.P.K. and Mason, M.D. (2006) Ultra-high Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal, 91, 4258-4272. https://doi.org/10.1529/biophysj.106.091116 |
[30] | van de Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., Heilemann, M., et al. (2011) Direct Stochastic Optical Reconstruction Microscopy with Standard Fluorescent Probes. Nature Protocols, 6, 991-1009. https://doi.org/10.1038/nprot.2011.336 |
[31] | Deschout, H., Zanacchi, F.C., Mlodzianoski, M., Diaspro, A., Bewersdorf, J., Hess, S.T., et al. (2014) Precisely and Accurately Localizing Single Emitters in Fluorescence Microscopy. Nature Methods, 11, 253-266. https://doi.org/10.1038/nmeth.2843 |
[32] | Shroff, H., Galbraith, C.G., Galbraith, J.A. and Betzig, E. (2008) Live-Cell Photoactivated Localization Microscopy of Nanoscale Adhesion Dynamics. Nature Methods, 5, 417-423. https://doi.org/10.1038/nmeth.1202 |
[33] | Lukinavičius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., et al. (2013) A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins. Nature Chemistry, 5, 132-139. https://doi.org/10.1038/nchem.1546 |
[34] | Wäldchen, S., Lehmann, J., Klein, T., van de Linde, S. and Sauer, M. (2015) Light-Induced Cell Damage in Live-Cell Super-Resolution Microscopy. Scientific Reports, 5, Article No. 15348. https://doi.org/10.1038/srep15348 |
[35] | Baddeley, D., Cannell, M.B. and Soeller, C. (2010) Visualization of Localization Microscopy Data. Microscopy and Microanalysis, 16, 64-72. https://doi.org/10.1017/s143192760999122x |
[36] | Nicovich, P.R., Owen, D.M. and Gaus, K. (2017) Turning Single-Molecule Localization Microscopy into a Quantitative Bioanalytical Tool. Nature Protocols, 12, 453-460. https://doi.org/10.1038/nprot.2016.166 |
[37] | Owen, D.M., Rentero, C., Rossy, J., Magenau, A., Williamson, D., Rodriguez, M., et al. (2010) PALM Imaging and Cluster Analysis of Protein Heterogeneity at the Cell Surface. Journal of Biophotonics, 3, 446-454. https://doi.org/10.1002/jbio.200900089 |
[38] | Sengupta, P., Jovanovic-Talisman, T., Skoko, D., Renz, M., Veatch, S.L. and Lippincott-Schwartz, J. (2011) Probing Protein Heterogeneity in the Plasma Membrane Using PALM and Pair Correlation Analysis. Nature Methods, 8, 969-975. https://doi.org/10.1038/nmeth.1704 |
[39] | Cisse, I.I., Izeddin, I., Causse, S.Z., Boudarene, L., Senecal, A., Muresan, L., et al. (2013) Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells. Science, 341, 664-667. https://doi.org/10.1126/science.1239053 |
[40] | Shivanandan, A., Unnikrishnan, J. and Radenovic, A. (2016) On Characterizing Protein Spatial Clusters with Correlation Approaches. Scientific Reports, 6, Article No. 31164. https://doi.org/10.1038/srep31164 |
[41] | Ripley, B.D. (1977) Modelling Spatial Patterns. Journal of the Royal Statistical Society Series B: Statistical Methodology, 39, 172-192. https://doi.org/10.1111/j.2517-6161.1977.tb01615.x |
[42] | Dixon, P.M. (2006) Ripley’s K Function. |
[43] | Hansson, K., Jafari-Mamaghani, M. and Krieger, P. (2013) RipleyGUI: Software for Analyzing Spatial Patterns in 3D Cell Distributions. Frontiers in Neuroinformatics, 7, Article No. 5. https://doi.org/10.3389/fninf.2013.00005 |
[44] | Wiegand, T. and A. Moloney, K. (2004) Rings, Circles, and Null‐Models for Point Pattern Analysis in Ecology. Oikos, 104, 209-229. https://doi.org/10.1111/j.0030-1299.2004.12497.x |
[45] | Haase, P. (1995) Spatial Pattern Analysis in Ecology Based on Ripley’s K‐Function: Introduction and Methods of Edge Correction. Journal of Vegetation Science, 6, 575-582. https://doi.org/10.2307/3236356 |
[46] | Marcon, E. and Puech, F. (2009) Generalizing Ripley’s K Function to Inhomogeneous Populations. https://shs.hal.science/halshs-00372631/document |
[47] | Baddeley, A.J., Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a Three-Dimensional Point Pattern with Replication. Applied Statistics, 42, 641-668. https://doi.org/10.2307/2986181 |
[48] | Goreaud, F. and Pélissier, R. (1999) On Explicit Formulas of Edge Effect Correction for Ripley’s k‐Function. Journal of Vegetation Science, 10, 433-438. https://doi.org/10.2307/3237072 |
[49] | Kiskowski, M.A., Hancock, J.F. and Kenworthy, A.K. (2009) On the Use of Ripley’s K-Function and Its Derivatives to Analyze Domain Size. Biophysical Journal, 97, 1095-1103. https://doi.org/10.1016/j.bpj.2009.05.039 |
[50] | Besag, J. (1977) Comments on Ripley’s Paper. Journal of the Royal Statistical Society B, 39, 193-195. |
[51] | Ehrlich, M., Boll, W., van Oijen, A., Hariharan, R., Chandran, K., Nibert, M.L., et al. (2004) Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits. Cell, 118, 591-605. https://doi.org/10.1016/j.cell.2004.08.017 |
[52] | Curd, A.P., Leng, J., Hughes, R.E., Cleasby, A.J., Rogers, B., Trinh, C.H., et al. (2020) Nanoscale Pattern Extraction from Relative Positions of Sparse 3D Localizations. Nano Letters, 21, 1213-1220. https://doi.org/10.1021/acs.nanolett.0c03332 |
[53] | Pageon, S.V., Tabarin, T., Yamamoto, Y., Ma, Y., Nicovich, P.R., Bridgeman, J.S., et al. (2016) Functional Role of T-Cell Receptor Nanoclusters in Signal Initiation and Antigen Discrimination. Proceedings of the National Academy of Sciences, 113, E5454-E5463. https://doi.org/10.1073/pnas.1607436113 |
[54] | Deschout, H., Shivanandan, A., Annibale, P., Scarselli, M. and Radenovic, A. (2014) Progress in Quantitative Single-Molecule Localization Microscopy. Histochemistry and Cell Biology, 142, 5-17. https://doi.org/10.1007/s00418-014-1217-y |
[55] | Ester, M., et al. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, 2-4 August 1996, 226-231. |
[56] | Endesfelder, U., Finan, K., Holden, S.J., Cook, P.R., Kapanidis, A.N. and Heilemann, M. (2013) Multiscale Spatial Organization of RNA Polymerase in Escherichia coli. Biophysical Journal, 105, 172-181. https://doi.org/10.1016/j.bpj.2013.05.048 |
[57] | Mazouchi, A. and Milstein, J.N. (2015) Fast Optimized Cluster Algorithm for Localizations (FOCAL): A Spatial Cluster Analysis for Super-Resolved Microscopy. Bioinformatics, 32, 747-754. https://doi.org/10.1093/bioinformatics/btv630 |
[58] | Nino, D.F., Djayakarsana, D. and Milstein, J.N. (2020) FOCAL3D: A 3-Dimensional Clustering Package for Single-Molecule Localization Microscopy. PLOS Computational Biology, 16, e1008479. https://doi.org/10.1371/journal.pcbi.1008479 |
[59] | Pengo, T., Holden, S.J. and Manley, S. (2014) PALMsiever: A Tool to Turn Raw Data into Results for Single-Molecule Localization Microscopy. Bioinformatics, 31, 797-798. https://doi.org/10.1093/bioinformatics/btu720 |
[60] | Sieben, C., Banterle, N., Douglass, K.M., Gönczy, P. and Manley, S. (2018) Multicolor Single-Particle Reconstruction of Protein Complexes. Nature Methods, 15, 777-780. https://doi.org/10.1038/s41592-018-0140-x |
[61] | Barna, L., Dudok, B., Miczán, V., Horváth, A., László, Z.I. and Katona, I. (2015) Correlated Confocal and Super-Resolution Imaging by VividSTORM. Nature Protocols, 11, 163-183. https://doi.org/10.1038/nprot.2016.002 |
[62] | Pageon, S.V., Nicovich, P.R., Mollazade, M., Tabarin, T. and Gaus, K. (2016) Clus-DoC: A Combined Cluster Detection and Colocalization Analysis for Single-Molecule Localization Microscopy Data. Molecular Biology of the Cell, 27, 3627-3636. https://doi.org/10.1091/mbc.e16-07-0478 |
[63] | Lagache, T., Grassart, A., Dallongeville, S., Faklaris, O., Sauvonnet, N., Dufour, A., et al. (2018) Mapping Molecular Assemblies with Fluorescence Microscopy and Object-Based Spatial Statistics. Nature Communications, 9, Article No. 698. https://doi.org/10.1038/s41467-018-03053-x |
[64] | Malkusch, S. and Heilemann, M. (2016) Extracting Quantitative Information from Single-Molecule Super-Resolution Imaging Data with LAMA—Localization Microscopy Analyzer. Scientific Reports, 6, Article No. 34486. https://doi.org/10.1038/srep34486 |
[65] | Schnitzbauer, J., Wang, Y., Zhao, S., Bakalar, M., Nuwal, T., Chen, B., et al. (2018) Correlation Analysis Framework for Localization-Based Superresolution Microscopy. Proceedings of the National Academy of Sciences, 115, 3219-3224. https://doi.org/10.1073/pnas.1711314115 |
[66] | Mollazade, M., Tabarin, T., Nicovich, P.R., Soeriyadi, A., Nieves, D.J., Gooding, J.J., et al. (2017) Can Single Molecule Localization Microscopy Be Used to Map Closely Spaced RGD Nanodomains? PLOS ONE, 12, e0180871. https://doi.org/10.1371/journal.pone.0180871 |
[67] | Zhang, Y., Lara-Tejero, M., Bewersdorf, J. and Galán, J.E. (2017) Visualization and Characterization of Individual Type III Protein Secretion Machines in Live Bacteria. Proceedings of the National Academy of Sciences, 114, 6098-6103. https://doi.org/10.1073/pnas.1705823114 |
[68] | Pape, J.K., Stephan, T., Balzarotti, F., Büchner, R., Lange, F., Riedel, D., et al. (2020) Multicolor 3D MINFLUX Nanoscopy of Mitochondrial MICOS Proteins. Proceedings of the National Academy of Sciences, 117, 20607-20614. https://doi.org/10.1073/pnas.2009364117 |
[69] | Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. (2017) Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science, 355, 606-612. https://doi.org/10.1126/science.aak9913 |
[70] | Eilers, Y., Ta, H., Gwosch, K.C., Balzarotti, F. and Hell, S.W. (2018) MINFLUX Monitors Rapid Molecular Jumps with Superior Spatiotemporal Resolution. Proceedings of the National Academy of Sciences, 115, 6117-6122. https://doi.org/10.1073/pnas.1801672115 |
[71] | Gwosch, K.C., Pape, J.K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., et al. (2020) MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells. Nature Methods, 17, 217-224. https://doi.org/10.1038/s41592-019-0688-0 |
[72] | Schmidt, R., Weihs, T., Wurm, C.A., Jansen, I., Rehman, J., Sahl, S.J., et al. (2021) MINFLUX Nanometer-Scale 3D Imaging and Microsecond-Range Tracking on a Common Fluorescence Microscope. Nature Communications, 12, Article No. 1478. https://doi.org/10.1038/s41467-021-21652-z |
[73] | Macqueen, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1 January 1967, 281-297. http://projecteuclid.org/euclid.bsmsp/1200512992 |
[74] | Jacak, J., Schaller, S., Borgmann, D. and Winkler, S.M. (2015) Characterization of the Distance Relationship between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue. Microscopy and Microanalysis, 21, 826-836. https://doi.org/10.1017/s1431927615013513 |
[75] | Okabe, A., Boots, B., Sugihara, K. and Chiu, S.N. (2000) Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons Ltd. |
[76] | Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., et al. (2015) SR-Tesseler: A Method to Segment and Quantify Localization-Based Super-Resolution Microscopy Data. Nature Methods, 12, 1065-1071. https://doi.org/10.1038/nmeth.3579 |
[77] | Andronov, L., Orlov, I., Lutz, Y., Vonesch, J. and Klaholz, B.P. (2016) ClusterViSu, a Method for Clustering of Protein Complexes by Voronoi Tessellation in Super-Resolution Microscopy. Scientific Reports, 6, Article No. 24084. https://doi.org/10.1038/srep24084 |
[78] | Baddeley, D., Jayasinghe, I., Lam, L., Rossberger, S., Cannell, M.B. and Soeller, C. (2009) Optical Single-Channel Resolution Imaging of the Ryanodine Receptor Distribution in Rat Cardiac Myocytes. Proceedings of the National Academy of Sciences, 106, 22275-22280. https://doi.org/10.1073/pnas.0908971106 |
[79] | Andronov, L., Michalon, J., Ouararhni, K., Orlov, I., Hamiche, A., Vonesch, J., et al. (2018) 3DClusterViSu: 3D Clustering Analysis of Super-Resolution Microscopy Data by 3D Voronoi Tessellations. Bioinformatics, 34, 3004-3012. https://doi.org/10.1093/bioinformatics/bty200 |
[80] | Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. and Zhuang, X. (2011) Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging. Nature Methods, 8, 1027-1036. https://doi.org/10.1038/nmeth.1768 |
[81] | Xu, K., Zhong, G. and Zhuang, X. (2013) Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons. Science, 339, 452-456. https://doi.org/10.1126/science.1232251 |
[82] | Shi, X., Garcia, G., Van De Weghe, J.C., McGorty, R., Pazour, G.J., Doherty, D., et al. (2017) Super-Resolution Microscopy Reveals That Disruption of Ciliary Transition-Zone Architecture Causes Joubert Syndrome. Nature Cell Biology, 19, 1178-1188. https://doi.org/10.1038/ncb3599 |
[83] | Szymborska, A., de Marco, A., Daigle, N., Cordes, V.C., Briggs, J.A.G. and Ellenberg, J. (2013) Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging. Science, 341, 655-658. https://doi.org/10.1126/science.1240672 |
[84] | Thevathasan, J.V., Kahnwald, M., Cieśliński, K., Hoess, P., Peneti, S.K., Reitberger, M., et al. (2019) Nuclear Pores as Versatile Reference Standards for Quantitative Superresolution Microscopy. Nature Methods, 16, 1045-1053. https://doi.org/10.1038/s41592-019-0574-9 |
[85] | Laine, R.F., Albecka, A., van de Linde, S., Rees, E.J., Crump, C.M. and Kaminski, C.F. (2015) Structural Analysis of Herpes Simplex Virus by Optical Super-Resolution Imaging. Nature Communications, 6, Article No. 5980. https://doi.org/10.1038/ncomms6980 |
[86] | Wu, Y., Hoess, P., Tschanz, A., Matti, U., Mund, M. and Ries, J. (2022) Maximum-Likelihood Model Fitting for Quantitative Analysis of SMLM Data. Nature Methods, 20, 139-148. https://doi.org/10.1038/s41592-022-01676-z |
[87] | Khater, I.M., Aroca-Ouellette, S.T., Meng, F., Nabi, I.R. and Hamarneh, G. (2019) Caveolae and Scaffold Detection from Single Molecule Localization Microscopy Data Using Deep Learning. PLOS ONE, 14, e0211659. https://doi.org/10.1371/journal.pone.0211659 |
[88] | Khater, I.M., Meng, F., Wong, T.H., Nabi, I.R. and Hamarneh, G. (2018) Super Resolution Network Analysis Defines the Molecular Architecture of Caveolae and Caveolin-1 Scaffolds. Scientific Reports, 8, Article No. 9009. https://doi.org/10.1038/s41598-018-27216-4 |
[89] | Khater, I.M., Meng, F., Nabi, I.R. and Hamarneh, G. (2019) Identification of Caveolin-1 Domain Signatures via Machine Learning and Graphlet Analysis of Single-Molecule Super-Resolution Data. Bioinformatics, 35, 3468-3475. https://doi.org/10.1093/bioinformatics/btz113 |
[90] | Hyun, Y. and Kim, D. (2022) Development of Deep-Learning-Based Single-Molecule Localization Image Analysis. International Journal of Molecular Sciences, 23, Article No. 6896. https://doi.org/10.3390/ijms23136896 |
[91] | Williamson, D.J., Burn, G.L., Simoncelli, S., Griffié, J., Peters, R., Davis, D.M., et al. (2020) Machine Learning for Cluster Analysis of Localization Microscopy Data. Nature Communications, 11, Article No. 1493. https://doi.org/10.1038/s41467-020-15293-x |
[92] | Saavedra, L.A., Mosqueira, A. and Barrantes, F.J. (2024) A Supervised Graph-Based Deep Learning Algorithm to Detect and Quantify Clustered Particles. Nanoscale, 16, 15308-15318. https://doi.org/10.1039/d4nr01944j |
[93] | Lim, H., Kim, G.W., Heo, G.H., Jeong, U., Kim, M.J., Jeong, D., et al. (2024) Nanoscale Single-Vesicle Analysis: High-Throughput Approaches through Ai-Enhanced Super-Resolution Image Analysis. Biosensors and Bioelectronics, 263, Article ID: 116629. https://doi.org/10.1016/j.bios.2024.116629 |