|
智慧供应链建设是否有助于企业全要素生产率提升?——基于供应链创新试点的经验证据
|
Abstract:
智慧供应链建设对提高供应链韧性,提升企业生产力具有重要意义,同时也是实现“安全”与“发展”新发展格局的必然要求。本文选取2014~2022年沪深A股上市公司作为研究样本,采用双重差分模型探究智慧供应链建设对企业全要素生产率的政策影响以及作用机制。研究发现:智慧供应链建设能显著提升试点企业全要素生产率,数字化转型与成本管控水平在其中起到部分中介效应,该结论在经过一系列稳健性检验后依然成立。异质性分析表明,供应链创新试点对非国有企业与重点行业具有更高的政策影响。依据本文研究结论提出政策建议:(1) 总结供应链创新试点中的经验,加快推动数字化、智能化供应链体系建设。(2) 以智慧供应链建设为抓手,促进企业成本管控水平提升,协助企业降本增效。(3) 关注不同行业供应链优化目标的差异性,提高政策的靶向效果。
Intelligent supply chain construction is of great significance to improve the resilience of supply chain and enhance the productivity of enterprises, and it is also an inevitable requirement to realize the new development pattern of “security” and “development”. This paper selects A-share listed companies in Shanghai and Shenzhen from 2014 to 2022 as research samples, and uses double-difference models to investigate the policy impact and mechanism of smart supply chain construction on enterprise total factor productivity. It is found that smart supply chain construction can significantly improve the total factor productivity of pilot enterprises, and digital transformation and cost control level play a partial mediating effect, which is still valid after a series of robustness tests. Heterogeneity analysis shows that the supply chain innovation pilot has a higher policy impact on non-state-owned enterprises and key industries. Based on the findings of this paper, we propose the following policy recommendations: (1) Summarize the experience in the supply chain innovation pilot and accelerate the construction of digital and intelligent supply chain system. (2) Take the construction of intelligent supply chain as a hand, promote the improvement of enterprise cost control level, and assist enterprises to reduce costs and increase efficiency. (3) Pay attention to the differences in supply chain optimization goals of different industries to improve the targeting effect of policies.
[1] | 霍宝锋, 韩昭君, 赵先德. 权力与关系承诺对供应商整合的影响[J]. 管理科学学报, 2013, 16(4): 33-50. |
[2] | 乔非, 孔维畅, 刘敏, 等. 面向智能制造的智能工厂运营管理[J]. 管理世界, 2023, 39(1): 216-225. |
[3] | Wu, Q., Zhu, J. and Cheng, Y. (2023) The Effect of Cross-Organizational Governance on Supply Chain Resilience: A Mediating and Moderating Model. Journal of Purchasing and Supply Management, 29, Article ID: 100817. https://doi.org/10.1016/j.pursup.2023.100817 |
[4] | 石大千, 李雪琴, 李丹丹. 智慧供应链建设如何提升企业绩效?——基于供应链韧性优化视角的分析[J]. 中国管理科学, 2024: 1-13. |
[5] | Foerstl, K., Schleper, M.C. and Henke, M. (2017) Purchasing and Supply Management: From Efficiency to Effectiveness in an Integrated Supply Chain. Journal of Purchasing and Supply Management, 23, 223-228. https://doi.org/10.1016/j.pursup.2017.08.004 |
[6] | 卢强, 杨晓叶, 周琳云. 关系治理与契约治理对于供应链融资绩效的影响研究[J]. 管理评论, 2022, 34(8): 313-326. |
[7] | Fan, D., Lin, Y., Fu, X., Yeung, A.C.L. and Shi, X. (2023) Supply Chain Disruption Recovery in the Evolving Crisis. Transportation Research Part E: Logistics and Transportation Review, 176, Article ID: 103202. https://doi.org/10.1016/j.tre.2023.103202 |
[8] | 佟家栋, 谢丹阳, 包群, 等. “逆全球化”与实体经济转型升级笔谈[J]. 中国工业经济, 2017(6): 5-59. |
[9] | 祝丹枫, 李宇坤. 数字化供应链变革与企业劳动力投资效率: 基于供应链创新与应用试点的经验证据[J]. 商业研究, 2023(3): 49-57. |
[10] | 谷城, 徐杰. 供应链政策与供应链效率: 基于供应链创新与应用的准自然实验[J]. 哈尔滨商业大学学报(社会科学版), 2024(1): 33-48. |
[11] | Chang, S.E., Chen, Y. and Lu, M. (2019) Supply Chain Re-Engineering Using Blockchain Technology: A Case of Smart Contract Based Tracking Process. Technological Forecasting and Social Change, 144, 1-11. https://doi.org/10.1016/j.techfore.2019.03.015 |
[12] | Zouari, D., Ruel, S. and Viale, L. (2020) Does Digitalising the Supply Chain Contribute to Its Resilience? International Journal of Physical Distribution & Logistics Management, 51, 149-180. https://doi.org/10.1108/ijpdlm-01-2020-0038 |
[13] | 张树山, 谷城. 企业数字化转型与供应链韧性[J]. 南方经济, 2024(8): 137-158. |
[14] | 刘海建, 胡化广, 张树山, 等. 供应链数字化与企业绩效: 机制与经验证据[J]. 经济管理, 2023, 45(5): 78-98. |
[15] | 沈丽琼, 黄光于, 叶飞. 供应链政策与企业技术创新: 来自政府认定供应链创新试点企业的经验证据[J]. 科技管理研究, 2022, 42(19): 97-110. |
[16] | 杨金玉, 彭秋萍, 葛震霆. 数字化转型的客户传染效应: 供应商创新视角[J]. 中国工业经济, 2022(8): 156-174. |
[17] | 黄宏斌, 张玥杨, 许晨辉. 供应链数字化能促进链上企业间的融通创新吗: 基于智慧供应链政策的准自然实验[J]. 当代财经, 2023(8): 134-145. |
[18] | 宋佳宁, 宋在科. 数字化转型、技术溢出与制造业企业创新绩效[J]. 经济体制改革, 2023(4): 114-122. |
[19] | Chavez, R., Yu, W., Jacobs, M.A. and Feng, M. (2017) Data-Driven Supply Chains, Manufacturing Capability and Customer Satisfaction. Production Planning & Control, 28, 906-918. https://doi.org/10.1080/09537287.2017.1336788 |
[20] | 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745. |
[21] | 程虹, 刘三江, 罗连发. 中国企业转型升级的基本状况与路径选择——基于570家企业4794名员工入企调查数据的分析[J]. 管理世界, 2016(2): 57-70. |
[22] | 钱雪松, 康瑾, 唐英伦等. 产业政策、资本配置效率与企业全要素生产率——基于中国2009年十大产业振兴规划自然实验的经验研究[J]. 中国工业经济, 2018(8): 42-59. |
[23] | 李永波, 赵高才, 刘静. 供应链创新试点能强化企业新质生产力的同群效应吗?——一项准自然实验[J]. 金融理论与实践, 2024(5): 1-19. |
[24] | Levinsohn, J. and Petrin, A. (2003) Estimating Production Functions Using Inputs to Control for Unobservables. Review of Economic Studies, 70, 317-341. https://doi.org/10.1111/1467-937x.00246 |
[25] | 刘慧, 刘彩霞, 王天琪. 供给侧改革背景下智慧供应链对流通企业创新的影响研究[J]. 商业经济研究, 2024(14): 152-155. |
[26] | 谷城, 张树山, 刘赵宁. 物流业智慧化对企业绩效的影响与机制——基于供应链韧性视角[J]. 中国流通经济, 2024, 38(7): 87-100. |
[27] | 王竹泉, 段丙蕾, 王苑琢, 等. 资本错配、资产专用性与公司价值——基于营业活动重新分类的视角[J]. 中国工业经济, 2017(3): 120-138. |
[28] | 曹越, 唐奕可, 辛红霞. “环保费改税”提高了重污染企业全要素生产率吗? [J]. 审计与经济研究, 2022, 37(5): 95-106. |
[29] | Zhang, Y., Zhao, X. and Fu, B. (2022) Impact of Energy Saving on the Financial Performance of Industrial Enterprises in China: An Empirical Analysis Based on Propensity Score Matching. Journal of Environmental Management, 317, Article ID: 115377. https://doi.org/10.1016/j.jenvman.2022.115377 |
[30] | 方兰, 汤鹤延. 碳排放权交易对企业碳减排的效应——基于中国上市公司数据的准自然实验方法分析[J]. 陕西师范大学学报, 2022, 51(5): 14-27. |