全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进YOLOv8的PCB板缺陷检测研究
Research on PCB Board Defect Based on Improved YOLOv8

DOI: 10.12677/csa.2025.152048, PP. 209-219

Keywords: PCB缺陷检测,YOLOV8n,注意力机制,小目标缺陷检测,损失函数
PCB Defect Detection
, YOLOV8n, Attention Mechanism, Small Target Defect Detection, Loss Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

印刷电路板(PCB)作为现代电子设备的核心组成部分,随着技术的进步,在多个领域得到了广泛的应用,包括消费电子、通信、医疗设备、汽车、工业控制等。针对PCB传统缺陷检测方法过程中的成本高、效率低、漏检率高,并且常见PCB缺陷微小,检测精度低等问题,提出一种基于改进YOLOv8的深度学习检测方法。1) 引进ASF-YOLO网络,并且在此基础上添加小目标检测层;2) 在主干网络中加入SimAM注意力机制;3) 改进损失函数为Wise_CIoUv3。实验表明,改进后的模型的平均精度mAP达到90.4%,相比基线模型提高3.55%。另外,模型参数量下降17.19%,模型大小减少0.8 MB,实现了模型部分轻量化。为此领域提供了参考和应用价值。
As a core component of modern electronic equipment, printed circuit board (PCB) has been widely used in many fields with the progress of technology, including consumer electronics, communications, medical equipment, automobiles, industrial control and so on. Aiming at the problems of high cost, low efficiency, high missed detection rate, small PCB defects and low detection accuracy in traditional PCB defect detection methods, a deep learning detection method based on improved YOLOv8 was proposed. 1) Introduce ASF-YOLO network, and add small target detection layer on this basis; 2) Add the SimAM attention mechanism to the backbone network; 3) Improve the loss function to Wise_CIoUv3. Experiments show that the average precision mAP of the improved model reaches 90.4%, which is 3.55% higher than that of the baseline model. In addition, the number of model parameters decreased by 17.19%, the size of the model decreased by 0.8 MB, and the initial lightweight of the model was realized. It provides reference and application value in this field.

References

[1]  杨思念, 曹立佳, 杨洋, 等. 基于机器视觉的PCB缺陷检测算法研究综述[J]. 计算机科学与探索, 2014(1): 1-19.
[2]  Chen, I., Hwang, R. and Huang, H. (2023) PCB Defect Detection Based on Deep Learning Algorithm. Processes, 11, Article 775.
https://doi.org/10.3390/pr11030775
[3]  田健至. 基于YOLOv5的PCB板缺陷检测及模型优化[D]: [硕士学位论文]. 武汉: 武汉工程大学, 2023.
[4]  Ling, Q., Isa, N.A.M. and Asaari, M.S.M. (2023) Precise Detection for Dense PCB Components Based on Modified Yolov8. IEEE Access, 11, 116545-116560.
https://doi.org/10.1109/access.2023.3325885
[5]  Peng, Q., Gao, X. and Wang, S. (2024) An Improved YOLOv8 Method for PCB Defect Detection. 2024 43rd Chinese Control Conference (CCC), Kunming, 28-31 July 2024, 8100-8105.
https://doi.org/10.23919/ccc63176.2024.10661388
[6]  Yang, R. and Zhao, W. (2024) SWM-YOLO: A New PCB Surface Defect Detection Algorithm Based on YOLOv8. 2024 9th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, 21-23 November 2024, 356-360.
https://doi.org/10.1109/iciibms62405.2024.10792700
[7]  韩强. 面向小目标检测的改进YOLOV8算法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2023.
[8]  朱启玥, 胡宗仁, 朱家兵. 基于改进YOLOv8的PCB缺陷检测方法[J]. 重庆工商大学学报(自然科学版), 2024(1): 1-13.
[9]  王俊锋, 刘波, 李胜, 等. 面向实时目标检测的高效算法研究与优化[J]. 计算机科学与探索, 14(10): 1749-1757.
[10]  Kang, M., Ting, C., Ting, F.F. and Phan, R.C. (2024) ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation. Image and Vision Computing, 147, Article ID: 105057.
https://doi.org/10.1016/j.imavis.2024.105057
[11]  Yang, L., Zhang, R.Y., Li, L. and Xie, X. (2021) SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. International Conference on Machine Learning, 18-24 July 2021, 11863-11874.
[12]  Tong, Z., Chen, Y., Xu, Z. and Yu, R. (2023) Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv: 2301.10051.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133