全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于历史数据的仓库仿真模型参数拟合研究
Research on Parameter Fitting of Warehouse Simulation Model Based on Historical Data

DOI: 10.12677/csa.2025.152046, PP. 190-199

Keywords: 货仓,仿真模拟,参数拟合,数据提取
Warehouse
, Simulation, Parameter Fitting, Data Extraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

仓储是现代物流中降低供应链成本的重要环节。针对传统方法难以有效评估仓储操作效率的问题,提出了一种基于仿真技术的优化方法。该方法通过构建仓储仿真模型,模拟不同作业策略的效果,并重点优化模型参数设置。研究利用历史数据提取关键操作效率指标,并结合回归方法预测特定流程的处理时间,从而提供准确的参数输入,提升模型与实际仓储环境的匹配度。实验验证表明,基于回归分析的参数生成方法具有较高的可靠性和实用性,仿真结果与实际情况高度吻合,证明了该模型在优化仓储性能方面的有效性。
Warehousing is a critical component of modern logistics, playing a key role in reducing supply chain costs. To address the limitations of traditional methods in effectively evaluating warehouse operation efficiency, an optimization approach based on simulation technology is proposed. This approach involves constructing a warehouse simulation model to simulate the effects of different job strategies and focuses on optimizing model parameter settings. Historical data is used to extract key operational efficiency metrics, combined with regression methods to predict processing times for specific processes, providing accurate parameter inputs and enhancing the model’s alignment with actual warehouse environments. Experimental validation demonstrates that the parameter generation method based on regression analysis is highly reliable and practical. The simulation results align closely with real-world scenarios, confirming the model’s effectiveness in optimizing warehouse performance.

References

[1]  Robinson, A. (2018) Why Logistics Efficiency Is More Important than Ever for Manufacturers.
https://cerasis.com/2014/06/09/logistics-efficiency
[2]  The Establish Davis Database (2020) Logistics Cost and Service.
https://www.establishinc.com/establish-davis-database
[3]  Burinskiene, A. (2011) The Travelling of Forklifts in Warehouses. International Journal of Simulation Modelling, 10, 204-212.
https://doi.org/10.2507/ijsimm10(4)4.191
[4]  Merkuryev, Y., Burinskiene, A. and Merkuryeva, G. (2009) Warehouse Order Picking Process. In: Merkuryev, Y., Merkuryeva, G., Piera, M. and Guasch, A., Eds., Simulation-Based Case Studies in Logistics, Springer, 147-165.
https://doi.org/10.1007/978-1-84882-187-3_9
[5]  Yafei, L., Qingming, W. and Peng, G. (2018) Research on Simulation and Optimization of Warehouse Logistics Based on Flexsim-Take C Company as an Example. 2018 7th International Conference on Industrial Technology and Management (ICITM), Oxford, 7-9 March 2018, 288-293.
https://doi.org/10.1109/icitm.2018.8333963
[6]  Jiao, Y., Xing, X., Zhang, P., Xu, L. and Liu, X. (2018) Multi-Objective Storage Location Allocation Optimization and Simulation Analysis of Automated Warehouse Based on Multi-Population Genetic Algorithm. Concurrent Engineering, 26, 367-377.
https://doi.org/10.1177/1063293x18796365
[7]  Müller, M., Reggelin, T. and Schmidt, S. (2018) Simulation-Based Planning and Optimization of an Automated Laundry Warehouse Using a Genetic Algorithm. Proceedings of the 17th International Conference on Modeling & Applied Simulation (MAS 2018), Budapest, 17-19 September 2018, 153-158.
[8]  Pan, C., Yu, S. and Du, X. (2018) Optimization of Warehouse Layout Based on Genetic Algorithm and Simulation Technique. 2018 Chinese Control and Decision Conference (CCDC), Shenyang, 9-11 June 2018, 3632-3635.
https://doi.org/10.1109/ccdc.2018.8407753
[9]  Rabe, M., Spieckermann, S. and Wenzel, S. (2008) A New Procedure Model for Verification and Validation in Production and Logistics Simulation. 2008 Winter Simulation Conference, Miami, 7-10 December 2008, 1717-1726.
https://doi.org/10.1109/wsc.2008.4736258
[10]  Zengin, A. and Ozturk, M.M. (2012) Formal Verification and Validation with Devs-Suite: OSPF Case Study. Simulation Modelling Practice and Theory, 29, 193-206.
https://doi.org/10.1016/j.simpat.2012.05.013
[11]  Sargent, R.G. (2013) Verification and Validation of Simulation Models. Journal of Simulation, 7, 12-24.
https://doi.org/10.1057/jos.2012.20
[12]  Balci, O. (1997) Verification Validation and Accreditation of Simulation Models. Proceedings of the 29th Conference on Winter Simulation, Atlanta, 7-10 December 1997, 135-141.
https://doi.org/10.1145/268437.268462
[13]  Oberkampf, W.L. and Barone, M.F. (2006) Measures of Agreement between Computation and Experiment: Validation Metrics. Journal of Computational Physics, 217, 5-36.
https://doi.org/10.1016/j.jcp.2006.03.037
[14]  Law, A.M. (2022) How to Build Valid and Credible Simulation Models. 2022 Winter Simulation Conference (WSC), Singapore, 11-14 December 2022, 1283-1295.
https://doi.org/10.1109/wsc57314.2022.10015411
[15]  Sargent, R.G. (2013) An Introduction to Verification and Validation of Simulation Models. 2013 Winter Simulations Conference (WSC), Washington, 8-11 December 2013, 321-327.
https://doi.org/10.1109/wsc.2013.6721430
[16]  Korth, B., Schwede, C. and Zajac, M. (2018) Simulation-Ready Digital Twin for Realtime Management of Logistics Systems. 2018 IEEE International Conference on Big Data (Big Data), Seattle, 10-13 December 2018, 4194-4201.
https://doi.org/10.1109/bigdata.2018.8622160
[17]  Furmann, R., Furmannová, B. and Więcek, D. (2017) Interactive Design of Reconfigurable Logistics Systems. Procedia Engineering, 192, 207-212.
https://doi.org/10.1016/j.proeng.2017.06.036
[18]  Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., et al. (2021) Enabling Technologies and Tools for Digital Twin. Journal of Manufacturing Systems, 58, 3-21.
https://doi.org/10.1016/j.jmsy.2019.10.001
[19]  Kousi, N., Gkournelos, C., Aivaliotis, S., Giannoulis, C., Michalos, G. and Makris, S. (2019) Digital Twin for Adaptation of Robots’ Behavior in Flexible Robotic Assembly Lines. Procedia Manufacturing, 28, 121-126.
https://doi.org/10.1016/j.promfg.2018.12.020
[20]  van der Zee, D. (2019) Model Simplification in Manufacturing Simulation—Review and Framework. Computers & Industrial Engineering, 127, 1056-1067.
https://doi.org/10.1016/j.cie.2018.11.038
[21]  Fusko, M., Rakyta, M. and Manlig, F. (2017) Reducing of Intralogistics Costs of Spare Parts and Material of Implementation Digitization in Maintenance. Procedia Engineering, 192, 213-218.
https://doi.org/10.1016/j.proeng.2017.06.037
[22]  Al Theeb, N.A., Al-Araidah, O., Al-Ali, M.M. and Khudair, A.I. (2023) Impact of Human Energy Expenditure on Order Picking Productivity: A Monte Carlo Simulation Study in a Zone Picking System. Engineering Management in Production and Services, 15, 12-24.
https://doi.org/10.2478/emj-2023-0025
[23]  Taylor, F.W. (1919) The Principles of Scientific Management. Harper & Brothers.
[24]  Baumgart, A. and Neuhauser, D. (2009) Frank and Lillian Gilbreth: Scientific Management in the Operating Room. Quality and Safety in Health Care, 18, 413-415.
https://doi.org/10.1136/qshc.2009.032409

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133