|
基于动态变量相关性消减的多目标多任务进化算法
|
Abstract:
多目标多任务优化(MTO)是进化计算领域的重要分支。变量相关性对遗传操作的挑战一直影响着多目标多任务优化的效率,但这一问题尚未得到认真考虑。为此,本文提出了一种基于动态变量相关性消减的多目标多任务进化算法(MTO-DCR),通过结合学习到的变量协方差矩阵进行坐标变换以减少变量相关性。具体而言,MTO-DCR首先通过坐标变换动态减少变量相关性以生成后代。为学习变量相关性,针对每个任务分别维护了独立的协方差自适应搜索。此外,提出了一种基于缩放变换的领域迁移策略,用于将源任务中表现优异的个体迁移到目标任务中。为验证所提MTO-DCR的有效性和效率,构建了一组具有可控非可分性和难度的可扩展MOMTOP测试实例进行实验研究。结果分析及与最新算法(MO-SBO、MO-MaTDE和MO-EMaTO-MKT)的对比表明,所提MTO-DCR能够有效处理具有相关变量的MTO问题。
Multi-objective multi-task optimization (MTO) is an important branch of evolutionary computation. The challenge of variable dependency in genetic operations has consistently impacted the efficiency of multi-objective multi-task optimization, yet this issue has not been thoroughly addressed. To this end, this paper proposes a multi-objective multi-task evolutionary algorithm based on dynamic variable dependency reduction (MTO-DCR), which reduces variable dependency through coordinate transformation using a learned covariance matrix. Specifically, MTO-DCR dynamically reduces variable dependency via coordinate transformation to generate offspring. To learn variable dependencies, independent covariance adaptive searches are maintained for each task. Additionally, a domain transfer strategy based on scaling transformation is proposed to migrate well-performing individuals from source tasks to target tasks. To validate the effectiveness and efficiency of the proposed MTO-DCR, a set of scalable MOMTOP test instances with controllable non-separability and difficulty levels is constructed for experimental studies. Results analysis and comparisons with state-of-the-art algorithms (MO-SBO, MO-MaTDE, and MO-EMaTO-MKT) demonstrate that the proposed MTO-DCR effectively handles MTO problems with correlated variables.
[1] | Binh, H.T.T., Tuan, N.Q. and Long, D.C.T. (2019) A Multi-Objective Multi-Factorial Evolutionary Algorithm with Reference-Point-Based Approach. 2019 IEEE Congress on Evolutionary Computation (CEC). Wellington, 10-13 June 2019, 2824-2831. https://doi.org/10.1109/CEC.2019.8790034 |
[2] | Chacon, J. and Segura, C. (2018) Analysis and Enhancement of Simulated Binary Crossover. 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, 8-13 July 2018, 1-8. https://doi.org/10.1109/cec.2018.8477746 |
[3] | Chen, Y., Zhong, J., Feng, L. and Zhang, J. (2020) An Adaptive Archive-Based Evolutionary Framework for Many-Task Optimization. IEEE Transactions on Emerging Topics in Computational Intelligence, 4, 369-384. https://doi.org/10.1109/tetci.2019.2916051 |
[4] | Couckuyt, I., Deschrijver, D. and Dhaene, T. (2012) Towards Efficient Multiobjective Optimization: Multiobjective Statistical Criterions. 2012 IEEE Congress on Evolutionary Computation, Brisbane, 10-15 June 2012, 1-8. https://doi.org/10.1109/cec.2012.6256586 |
[5] | Deb, K. and Agrawal, R.B. (1995) Simulated Binary Crossover for Continuous Search Space. Complex Systems, 9, 115-148. |
[6] | Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2000) A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Parallel Problem Solving from Nature-PPSN VI, Paris, 18-20 September 2000, 849-858. https://doi.org/10.1007/3-540-45356-3_83 |
[7] | Deb, K. and Jain, H. (2014) An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Transactions on Evolutionary Computation, 18, 577-601. https://doi.org/10.1109/tevc.2013.2281535 |
[8] | Arabas, J. and Jagodzinski, D. (2020) Toward a Matrix-Free Covariance Matrix Adaptation Evolution Strategy. IEEE Transactions on Evolutionary Computation, 24, 84-98. https://doi.org/10.1109/tevc.2019.2907266 |
[9] | Auger, A. and Hansen, N. (2005) A Restart CMA Evolution Strategy with Increasing Population Size. 2005 IEEE Congress on Evolutionary Computation, Edinburgh, 2-5 September 2005, 1769-1776. https://doi.org/10.1109/cec.2005.1554902 |
[10] | Wang, Y., Li, H., Huang, T. and Li, L. (2014) Differential Evolution Based on Covariance Matrix Learning and Bimodal Distribution Parameter Setting. Applied Soft Computing, 18, 232-247. https://doi.org/10.1016/j.asoc.2014.01.038 |
[11] | Hansen, N., Müller, S.D. and Koumoutsakos, P. (2003) Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11, 1-18. https://doi.org/10.1162/106365603321828970 |
[12] | Igel, C., Hansen, N. and Roth, S. (2007) Covariance Matrix Adaptation for Multi-Objective Optimization. Evolutionary Computation, 15, 1-28. https://doi.org/10.1162/evco.2007.15.1.1 |
[13] | Liang, Z., Xu, X., Liu, L., Tu, Y. and Zhu, Z. (2022) Evolutionary Many-Task Optimization Based on Multisource Knowledge Transfer. IEEE Transactions on Evolutionary Computation, 26, 319-333. https://doi.org/10.1109/tevc.2021.3101697 |
[14] | Deb, K., Thiele, L., Laumanns, M. and Zitzler, E. (2002) Scalable Multi-Objective Optimization Test Problems. Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, 12-17 May 2002, 825-830. https://doi.org/10.1109/cec.2002.1007032 |
[15] | Zitzler, E., Deb, K. and Thiele, L. (2000) Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8, 173-195. https://doi.org/10.1162/106365600568202 |