全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有特定结构的碳包覆硅–石墨锂离子电池的高性能负极材料
High-Performance Anode Material for Lithium-Ion Batteries Comprising Carbon-Coated Silicon-Graphite with a Specified Structure

DOI: 10.12677/aac.2025.151012, PP. 108-122

Keywords: 介孔硅,碳涂层,球磨法,锂离子电池,电化学性能
Silicon Nanoparticle
, Carbon Coating, Ball Milling, Lithium-Ion Battery, Electrochemical Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

硅基锂离子电池负极材料由于能量密度高、工作电压适中而受到全世界的关注,但硅基材料存在体积膨胀和动力学较差等缺陷,该问题严重限制了硅基负极材料的大规模应用。文章提出了一种将纳米尺寸的介孔Si颗粒封装在碳中的设计策略,该Si@C纳米复合材料的尺寸约为200 nm左右。将Si@C以不同比例(20 wt%、30 wt%、40 wt%)和石墨混合、球磨合成,从而最终制备得到硅–石墨锂离子电池负极材料,通过包覆的碳层和复合的石墨层提高LIBs的能量密度和高稳定性。在本工作的研究中我们发现Si@C/G (20 wt%)纳米复合材料在100次循环中表现出600 mAh?g1的高比容量,在0.5 A?g1的电流密度下实现了750次的稳定循环,展现了优秀的循环稳定性,平均充电/放电容量为360 mAh?g1。此外,在不同电流密度下测试了Si@C/G (20 wt%)复合电极,并在1 A?g1下显示出262 mAhg1的相对较高的可逆容量。与其他两种复合材料相比,Si@C/G (20 wt%)表现出高容量和稳定性。Si@C/G (20 wt%)获得的电化学性能证明了低含量合成纳米硅与石墨的高兼容性。此外,碳涂层防止了充电/放电过程中Si的体积膨胀。这个想法可以应用于设计高能量密度LIB负极材料。
Silicon-based anodes for lithium-ion batteries (LIBs) are attractive due to their high energy density, but challenges such as significant volume expansion and poor kinetics have limited their practical application. This work introduces a Si@C nanocomposite, where nano-sized mesoporous silicon particles are encapsulated in carbon, with particle sizes around 200nm. The Si@C was blended with graphite at ratios of 20 wt%, 30 wt%, and 40 wt%, then ball-milled to form composite anode materials. The Si@C/G (20 wt%) composite demonstrated superior electrochemical performance, maintaining a high specific capacity of 600 mAh?g?1 over 100 cycles and stable cycling up to 750 times at 0.5 A?g?1, with an average charge/discharge capacity of 360 mAh?g?1. At higher current densities, it showed good reversible capacity retention, reaching 262 mAh?g?1 at 1 A?g?1. The carbon coating effectively mitigated silicon’s volumetric changes during cycling, enhancing stability. This study highlights the effectiveness of integrating low-content nano-silicon with graphite for achieving high-performance LIB anodes, showcasing the potential of Si@C/G (20 wt%) composites for next-generation battery technology. Moreover, the carbon coating prevented the volume expansion of Si during the charge/discharge process. This concept can be applied in designing high-energy-density LIB anode materials.

References

[1]  Lu, D., Lei, X., Weng, S., Li, R., Li, J., Lv, L., et al. (2022) A Self-Purifying Electrolyte Enables High Energy Li Ion Batteries. Energy & Environmental Science, 15, 3331-3342.
https://doi.org/10.1039/d2ee00483f
[2]  Huang, Y., Li, R., Weng, S., Zhang, H., Zhu, C., Lu, D., et al. (2022) Eco-Friendly Electrolytes via a Robust Bond Design for High-Energy Li Metal Batteries. Energy & Environmental Science, 15, 4349-4361.
https://doi.org/10.1039/d2ee01756c
[3]  Zhao, H., Liang, K., Wang, S., Ding, Z., Huang, X., Chen, W., et al. (2023) RETRACTED: A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo-Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics. Advanced Science, 10, Article ID: 2303696.
https://doi.org/10.1002/advs.202303696
[4]  Masias, A., Marcicki, J. and Paxton, W.A. (2021) Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Letters, 6, 621-630.
https://doi.org/10.1021/acsenergylett.0c02584
[5]  Nandan, R., Takamori, N., Higashimine, K., Badam, R. and Matsumi, N. (2022) Zinc Blende Inspired Rational Design of a Β-Sic Based Resilient Anode Material for Lithium-Ion Batteries. Journal of Materials Chemistry A, 10, 5230-5243.
https://doi.org/10.1039/d1ta08516f
[6]  Chen, Z., Soltani, A., Chen, Y., Zhang, Q., Davoodi, A., Hosseinpour, S., et al. (2022) Emerging Organic Surface Chemistry for Si Anodes in Lithium‐Ion Batteries: Advances, Prospects, and Beyond. Advanced Energy Materials, 12, Article ID: 2200924.
https://doi.org/10.1002/aenm.202200924
[7]  Tan, W., Yang, F., Yi, T., Liu, G., Wei, X., Long, Q., et al. (2022) Fullerene-Like Elastic Carbon Coatings on Silicon Nanoparticles by Solvent Controlled Association of Natural Polyaromatic Molecules as High-Performance Lithium-Ion Battery Anodes. Energy Storage Materials, 45, 412-421.
https://doi.org/10.1016/j.ensm.2021.11.040
[8]  Wang, S., Wu, Q., Cai, Z., Ma, Z., Ahsan, Z., Li, Y., et al. (2023) Dual-Phase Sic + C Coated Microsize Si@SiOx Powder as Anode Material for Li-Ion Batteries. ACS Applied Energy Materials, 6, 9788-9797.
https://doi.org/10.1021/acsaem.3c01998
[9]  Cheng, Z., Jiang, H., Zhang, X., Cheng, F., Wu, M. and Zhang, H. (2023) Fundamental Understanding and Facing Challenges in Structural Design of Porous Si‐Based Anodes for Lithium‐ion Batteries. Advanced Functional Materials, 33, Article ID: 2301109.
https://doi.org/10.1002/adfm.202301109
[10]  Man, Q., An, Y., Liu, C., Shen, H., Xiong, S. and Feng, J. (2023) Interfacial Design of Silicon/Carbon Anodes for Rechargeable Batteries: A Review. Journal of Energy Chemistry, 76, 576-600.
https://doi.org/10.1016/j.jechem.2022.09.020
[11]  Saddique, J., Wu, M., Ali, W., Xu, X., Jiang, Z., Tong, L., et al. (2024) Opportunities and Challenges of Nano Si/C Composites in Lithium Ion Battery: A Mini Review. Journal of Alloys and Compounds, 978, Article ID: 173507.
https://doi.org/10.1016/j.jallcom.2024.173507
[12]  Bi, J., Du, Z., Sun, J., Liu, Y., Wang, K., Du, H., et al. (2023) On the Road to the Frontiers of Lithium‐Ion Batteries: A Review and Outlook of Graphene Anodes. Advanced Materials, 35, Article ID: 2210734.
https://doi.org/10.1002/adma.202210734
[13]  Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J. and Bai, J. (2022) Graphene-Based Lithium-Ion Battery Anode Materials Manufactured by Mechanochemical Ball Milling Process: A Review and Perspective. Composites Part B: Engineering, 246, Article ID: 110232.
https://doi.org/10.1016/j.compositesb.2022.110232
[14]  Ruan, H., Zhang, L., Li, S., Li, L., Huang, Y., Gao, S., et al. (2022) Spatially Confined Silicon Nanoparticles Anchored in Porous Carbon as Lithium-Ion-Battery Anode Materials. ACS Applied Nano Materials, 5, 13542-13552.
https://doi.org/10.1021/acsanm.2c03196
[15]  Lee, B.S., Oh, S., Choi, Y.J., Yi, M., Kim, S.H., Kim, S., et al. (2023) Sio-Induced Thermal Instability and Interplay between Graphite and Sio in Graphite/SiO Composite Anode. Nature Communications, 14, Article No. 150.
https://doi.org/10.1038/s41467-022-35769-2
[16]  Xie, G., Tan, X., Shi, Z., Peng, Y., Ma, Y., Zhong, Y., Wang, F., He, J., Zhu, Z., Cheng, X.-B., Wang, G., Wang, T. and Wu, Y. (2025) SiOx Based Anodes for Advanced Li-Ion Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 35, Article ID: 2414714.
[17]  Cui, Y. (2021) Silicon Anodes. Nature Energy, 6, 995-996.
https://doi.org/10.1038/s41560-021-00918-2
[18]  Bitew, Z., Tesemma, M., Beyene, Y. and Amare, M. (2022) Nano-Structured Silicon and Silicon Based Composites as Anode Materials for Lithium Ion Batteries: Recent Progress and Perspectives. Sustainable Energy & Fuels, 6, 1014-1050.
https://doi.org/10.1039/d1se01494c
[19]  Yan, Z., Jiang, J., Zhang, Y., Yang, D. and Du, N. (2022) Scalable and Low-Cost Synthesis of Porous Silicon Nanoparticles as High-Performance Lithium-Ion Battery Anode. Materials Today Nano, 18, Article ID: 100175.
https://doi.org/10.1016/j.mtnano.2022.100175
[20]  Zhang, R., Yu, P., Li, Z., Shen, X., Yu, Y. and Yu, J. (2025) Hierarchical Porous Structured Si/C Anode Material for Lithium-Ion Batteries by Dual Encapsulating Layers for Enhanced Lithium-Ion and Electron Transports Rates. Small, 21, e2407276.
[21]  An, W., He, P., Che, Z., Xiao, C., Guo, E., Pang, C., et al. (2022) Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 14, 10308-10318.
https://doi.org/10.1021/acsami.1c22656
[22]  Liu, N., Liu, J., Jia, D., Huang, Y., Luo, J., Mamat, X., et al. (2019) Multi-Core Yolk-Shell Like Mesoporous Double Carbon-Coated Silicon Nanoparticles as Anode Materials for Lithium-Ion Batteries. Energy Storage Materials, 18, 165-173.
https://doi.org/10.1016/j.ensm.2018.09.019
[23]  Chen, J., Wang, S., Hou, Y., Wang, H., Zhang, B., Wen, W., et al. (2024) CNTs and rGO Synergistically Enhance the Cycling Stability of Yolk-Shell Silicon Anodes for Efficient Lithium Storage. International Journal of Hydrogen Energy, 55, 414-421.
https://doi.org/10.1016/j.ijhydene.2023.11.268
[24]  Gao, J., Zuo, S., Liu, H., Jiang, Q., Wang, C., Yin, H., et al. (2022) An Interconnected and Scalable Hollow Si-C Nanospheres/Graphite Composite for High-Performance Lithium-Ion Batteries. Journal of Colloid and Interface Science, 624, 555-563.
https://doi.org/10.1016/j.jcis.2022.05.135
[25]  Chen, J., Guo, X., Gao, M., Wang, J., Sun, S., Xue, K., et al. (2021) Self-Supporting Dual-Confined Porous Si@c-Zif@carbon Nanofibers for High-Performance Lithium-Ion Batteries. Chemical Communications, 57, 10580-10583.
https://doi.org/10.1039/d1cc04172j
[26]  Chen, J., Wang, S., Hou, Y., Wen, W., Wang, H., Zhang, B., et al. (2023) ZIFs Derived Multilayer Carbon and CNT Skeleton Networks and Graphene to Encapsulate Silicon Nanoparticles for Efficient Lithium Storage. Journal of Energy Storage, 74, Article ID: 109356.
https://doi.org/10.1016/j.est.2023.109356
[27]  Li, P., Kim, H., Myung, S. and Sun, Y. (2021) Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Materials, 35, 550-576.
https://doi.org/10.1016/j.ensm.2020.11.028
[28]  Kwon, H.J., Hwang, J., Shin, H., Jeong, M., Chung, K.Y., Sun, Y., et al. (2019) Nano/Microstructured Silicon-Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries. Nano Letters, 20, 625-635.
https://doi.org/10.1021/acs.nanolett.9b04395
[29]  Wang, D., Zhou, C., Cao, B., Xu, Y., Zhang, D., Li, A., et al. (2020) One-Step Synthesis of Spherical Si/C Composites with Onion-Like Buffer Structure as High-Performance Anodes for Lithium-Ion Batteries. Energy Storage Materials, 24, 312-318.
https://doi.org/10.1016/j.ensm.2019.07.045
[30]  Pivarníková, I., Flügel, M., Paul, N., Cannavo, A., Ceccio, G., Vacík, J., et al. (2024) Observation of Preferential Sputtering of Si/Graphite Anodes from Li-Ion Cells by GD-OES and Its Validation by Neutron Depth Profiling. Journal of Power Sources, 594, Article ID: 233972.
https://doi.org/10.1016/j.jpowsour.2023.233972
[31]  Zhao, W., Zhao, C., Wu, H., Li, L. and Zhang, C. (2024) Progress, Challenge and Perspective of Graphite-Based Anode Materials for Lithium Batteries: A Review. Journal of Energy Storage, 81, Article ID: 110409.
https://doi.org/10.1016/j.est.2023.110409
[32]  Han, M., Mu, Y., Wei, L., Zeng, L., Zhao, T. (2023) Multilevel Carbon Architecture of Subnanoscopic Silicon for Fast-Charging High-Energy-Density Lithium-Ion Batteries. Carbon Energy, 6, e377.
[33]  Wong, Y.J., Zhu, L., Teo, W.S., Tan, Y.W., Yang, Y., Wang, C., et al. (2011) Revisiting the Stöber Method: Inhomogeneity in Silica Shells. Journal of the American Chemical Society, 133, 11422-11425.
https://doi.org/10.1021/ja203316q
[34]  Jiang, Y., Wang, H., Li, B., Zhang, Y., Xie, C., Zhang, J., et al. (2016) Interfacial Engineering of Si/Multi-Walled Carbon Nanotube Nanocomposites Towards Enhanced Lithium Storage Performance. Carbon, 107, 600-606.
https://doi.org/10.1016/j.carbon.2016.06.068

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133