全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

拟线性斑秃趋化系统的最优控制问题
Optimal Control Problem of Quasilinear Alopecia Areata Chemoataxis

DOI: 10.12677/pm.2025.152059, PP. 175-197

Keywords: 趋化系统,斑秃,强解,最优条件
Chemotaxis
, Alopecia Areata, Strong Solutions, Optimality Conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,我们研究了三组式趋化系统的齐次Neumann初始边界值问题,该系统描述了斑秃的时空动态。与常规的趋化模型相比,该系统的一个显著特征是CD8+ T细胞在CD4+ T细胞的帮助下以非线性方式增殖。我们通过Leray-Schauder不动点定理证明了该系统强解的存在性、唯一性和正则性,随后建立了最优控制系统,推导出了系统全局最优解的存在性,并在Banach空间中利用拉格朗日乘子定理研究最优控制问题的一阶必要最优性条件,最后,我们得到了拉格朗日乘子的正则性结果。
In this paper, we investigate the problem of homogeneous Neumann initial boundary values for a three-group chemotaxis system that describes the spatiotemporal dynamics of alopecia areata. To compare with previous chemotaxis models, a distinctive feature of this system is that CD8+ T cells additionally proliferate in a nonlinear manner with the help of CD4+ T cells. We prove the existence, uniqueness and regularity of the strong solution of the system by the Leray-Schauder fixed point theorem, then establish the optimal control system, deduce the existence of the global optimal solution of the system, and use the Lagrange multiplier theorem in Banach space to study the first-order necessary optimality condition of the optimal control problem, and finally, we obtain the regularity result of the Lagrange multiplier.

References

[1]  Dobreva, A., Paus, R. and Cogan, N.G. (2020) Toward Predicting the Spatio-Temporal Dynamics of Alopecia Areata Lesions Using Partial Differential Equation Analysis. Bulletin of Mathematical Biology, 82, Article No. 34.
https://doi.org/10.1007/s11538-020-00707-0
[2]  Ito, T., Hashizume, H., Shimauchi, T., Funakoshi, A., Ito, N., Fukamizu, H., et al. (2013) CXCL10 Produced from Hair Follicles Induces Th1 and Tc1 Cell Infiltration in the Acute Phase of Alopecia Areata Followed by Sustained Tc1 Accumulation in the Chronic Phase. Journal of Dermatological Science, 69, 140-147.
https://doi.org/10.1016/j.jdermsci.2012.12.003
[3]  Luster, A.D. and Ravetch, J.V. (1987) Biochemical Characterization of a Gamma Interferon-Inducible Cytokine (ip-10). The Journal of Experimental Medicine, 166, 1084-1097.
https://doi.org/10.1084/jem.166.4.1084
[4]  Keller, E.F. and Segel, L.A. (1970) Initiation of Slime Mold Aggregation Viewed as an Instability. Journal of Theoretical Biology, 26, 399-415.
https://doi.org/10.1016/0022-5193(70)90092-5
[5]  Bellomo, N., Painter, K.J., Tao, Y. and Winkler, M. (2019) Occurrence vs. Absence of Taxis-Driven Instabilities in a May—Nowak Model for Virus Infection. SIAM Journal on Applied Mathematics, 79, 1990-2010.
https://doi.org/10.1137/19m1250261
[6]  Alekseev, G.V. (2016) Mixed Boundary Value Problems for Steady-State Magnetohydrodynamic Equations of Viscous Incompressible Fluid. Computational Mathematics and Mathematical Physics, 56, 1426-1439.
https://doi.org/10.1134/s0965542516080029
[7]  Casas, E. and Kunisch, K. (2017) Stabilization by Sparse Controls for a Class of Semilinear Parabolic Equations. SIAM Journal on Control and Optimization, 55, 512-532.
https://doi.org/10.1137/16m1084298
[8]  Karl, V. and Wachsmuth, D. (2017) An Augmented Lagrange Method for Elliptic State Constrained Optimal Control Problems. Computational Optimization and Applications, 69, 857-880.
https://doi.org/10.1007/s10589-017-9965-y
[9]  Kien, B.T., Rösch, A. and Wachsmuth, D. (2017) Pontryagin’s Principle for Optimal Control Problem Governed by 3D Navier-Stokes Equations. Journal of Optimization Theory and Applications, 173, 30-55.
https://doi.org/10.1007/s10957-017-1081-8
[10]  Kunisch, K., Trautmann, P. and Vexler, B. (2016) Optimal Control of the Undamped Linear Wave Equation with Measure Valued Controls. SIAM Journal on Control and Optimization, 54, 1212-1244.
https://doi.org/10.1137/141001366
[11]  Mallea-Zepeda, E., Ortega-Torres, E. and Villamizar-Roa, É.J. (2016) A Boundary Control Problem for Micropolar Fluids. Journal of Optimization Theory and Applications, 169, 349-369.
https://doi.org/10.1007/s10957-016-0925-y
[12]  Rueda-Gómez, D.A. and Villamizar-Roa, E.J. (2017) On the Rayleigh-Bénard-Marangoni System and a Related Optimal Control Problem. Computers & Mathematics with Applications, 74, 2969-2991.
https://doi.org/10.1016/j.camwa.2017.07.038
[13]  de Araujo, A.L.A. and de Magalhães, P.M.D. (2015) Existence of Solutions and Optimal Control for a Model of Tissue Invasion by Solid Tumours. Journal of Mathematical Analysis and Applications, 421, 842-877.
https://doi.org/10.1016/j.jmaa.2014.07.038
[14]  Ryu, S. (2008) Boundary Control of Chemotaxis Reaction Diffusion System. Honam Mathematical Journal, 30, 469-478.
https://doi.org/10.5831/hmj.2008.30.3.469
[15]  Ángeles Rodríguez-Bellido, M., Rueda-Gómez, D.A. and Villamizar-Roa, É.J. (2018) On a Distributed Control Problem for a Coupled Chemotaxis-Fluid Model. Discrete & Continuous Dynamical SystemsB, 23, 557-571.
https://doi.org/10.3934/dcdsb.2017208
[16]  Ryu, S. and Yagi, A. (2001) Optimal Control of Keller-Segel Equations. Journal of Mathematical Analysis and Applications, 256, 45-66.
https://doi.org/10.1006/jmaa.2000.7254
[17]  Chaves-Silva, F.W. and Guerrero, S. (2015) A Uniform Controllability Result for the Keller-Segel System. Asymptotic Analysis, 92, 313-338.
https://doi.org/10.3233/asy-141282
[18]  Chaves-Silva, F.W. and Guerrero, S. (2017) A Controllability Result for a Chemotaxis-Fluid Model. Journal of Differential Equations, 262, 4863-4905.
https://doi.org/10.1016/j.jde.2017.01.004
[19]  Feireisl, E. and Novotn, A. (2009) Singular Limits in Thermodynamics of Viscous Fluids. Springer.
[20]  Guillén-González, F. (2020) Optimal Bilinear Control Problem Related to a Chemo-Repulsion System in 2D Domains. ESAIM: Control, Optimisation and Calculus of Variations, 26, Article No. 29.
[21]  Simon, J. (1986) Compact Sets in the Spacel P (O, T; B). Annali di Matematica Pura ed Applicata, 146, 65-96.
https://doi.org/10.1007/bf01762360
[22]  Lions, J.L. (1969) Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod.
[23]  Zowe, J. and Kurcyusz, S. (1979) Regularity and Stability for the Mathematical Programming Problem in Banach Spaces. Applied Mathematics & Optimization, 5, 49-62.
https://doi.org/10.1007/bf01442543

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133