全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Definition and Properties of a Vector-Matrix Reversal Operator

DOI: 10.4236/jamp.2025.132034, PP. 623-632

Keywords: Reversal Operator, Reverse of a Vector, Reverse of a Matrix, Reversal Invariance, Reversal Matrix, Linear Algebra, Programming Techniques

Full-Text   Cite this paper   Add to My Lib

Abstract:

An in-depth description of an apparently forgotten matrix operation, the reversal operator, is developed. The properties of such an operation are also given, resulting in a new vector-matrix operation resembling the well-known ones of conjugation, transposition, and inversion. The reversal operator operates by ordering the object components where applied. Reversal is easy to perform as it is distributive regarding the vector sum and matrix product. Supplementary descriptions of matrix regions not often used in linear algebra, like the anti-diagonal concept, are also discussed. Some practical problems are given.

References

[1]  Ayres, F. (1970) Matrices (Spanish Version). McGraw Hill.
[2]  Carbó, R. and Domingo, L.L. (1987) Algebra Matricial y Lineal. Schaum-McGraw Hill.
[3]  Wilkinson, J.H. (1965) The Algebraic Eigenvalue Problem. Oxford University Press.
[4]  Wilkinson, J.H. and Reinsch, C. (1971) Handbook for Automatic Computation (II) Linear Algebra. Springer Verlag.
[5]  Durand, E. (1960) Solutions Numériques des Équations Algébriques. Masson.
[6]  Hogben, L. (2007) Handbook of Linear Algebra. Chapman & Hall/CRC.
[7]  Time Reversibility.
https://en.wikipedia.org/wiki/Time_reversibility
[8]  T-Symmetry.
https://en.wikipedia.org/wiki/T-symmetry
[9]  Chang, J. and Carbó-Dorca, R. (2020) Fuzzy Hypercubes and Their Time-Like Evolution. Journal of Mathematical Chemistry, 58, 1337-1344.
https://doi.org/10.1007/s10910-020-01137-y
[10]  Gowers, T. (2008) The Princeton Companion to Mathematics. Princeton University Press.
[11]  Carbó-Dorca, R. (2016) Natural Vector Spaces (Inward Power and Minkowski Norm of a Natural Vector, Natural Boolean Hypercubes) and a Fermat’s Last Theorem Conjecture. Journal of Mathematical Chemistry, 55, 914-940.
https://doi.org/10.1007/s10910-016-0708-6
[12]  Carbó-Dorca, R. (2016) N-Dimensional Boolean Hypercubes and the Goldbach Conjecture. Journal of Mathematical Chemistry, 54, 1213-1220.
https://doi.org/10.1007/s10910-016-0628-5
[13]  Carbó-Dorca, R. (2016) A Study on Goldbach Conjecture. Journal of Mathematical Chemistry, 54, 1798-1809.
https://doi.org/10.1007/s10910-016-0649-0
[14]  Carbó-Dorca, R. (2024) Whole Perfect Vectors and Fermat’s Last Theorem. Journal of Applied Mathematics and Physics, 12, 34-42.
https://doi.org/10.4236/jamp.2024.121004
[15]  Exchange Matrix.
https://en.wikipedia.org/wiki/Exchange_matrix
[16]  Carbó-Dorca, R. (2024) Natural Numbers and the Strong Goldbach Conjecture. Journal of Applied Mathematics and Physics, 12, 3208-3236.
https://doi.org/10.4236/jamp.2024.129192

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133