Making use of a CMB temperature formula derivable from the Stefan-Boltzmann law, we have discovered a duality between the Particle Data Group (PDG) CMB temperature of 2.7255 K and its implied Hubble constant
value of approximately 66.9 km/s/Mpc, which can be used to predict the 2287 observed supernova redshifts in the PantheonPlusSH0ES database. Both values of this duality fall within constraints set for these cosmological parameters by the Particle Data Group. Notably, because our solution requires a rigorous mathematical derivation of a cosmological distance-vs-redshift formula pertaining to a variant of the
cosmology model, our supernova redshift-matching solution fits only within the
constraints of the 2018 Planck Collaboration and the PDG. It is our conclusion that, by matching the entire PantheonPlusSH0ES dataset of 2287 observations with the Planck Collaboration
constraints, such a dataset provides strong support for a
value of
km/s/Mpc based on the Fixsen (2009) observation of
.
References
[1]
Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) The Basics of Flat Space Cosmology. International Journal of Astronomy and Astrophysics, 5, 116-124. https://doi.org/10.4236/ijaa.2015.52015
[2]
Stefan, J. (1879) Uber die beziehung zwischen der wärmestrahlung und der temperatur. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien, 79, 391-428.
[3]
Boltzmann, L. (1884) Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Annalen der Physik, 258, 291-294. https://doi.org/10.1002/andp.18842580616
[4]
Haug, E.G. (2024) CMB, Hawking, Planck, and Hubble Scale Relations Consistent with Recent Quantization of General Relativity Theory. International Journal of Theoretical Physics, 63, Article No. 57. https://doi.org/10.1007/s10773-024-05570-6
[5]
Haug, E.G. and Wojnow, S. (2024) How to Predict the Temperature of the CMB Directly Using the Hubble Parameter and the Planck Scale Using the Stefan-Boltzmann Law. Journal of Applied Mathematics and Physics, 12, 3552-3566. https://doi.org/10.4236/jamp.2024.1210211
[6]
Haug, E.G. (2020) Finding the Planck Length Multiplied by the Speed of Light without Any Knowledge of G, c, or ℏ, Using a Newton Force Spring. Journal of Physics Communications, 4, Article ID: 075001. https://doi.org/10.1088/2399-6528/ab9dd7
[7]
Stuckey, W.M. (1994) The Observable Universe Inside a Black Hole. American Journal of Physics, 62, 788-795. https://doi.org/10.1119/1.17460
[8]
Melia, F. and Shevchuk, A.S.H. (2011) The Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 419, 2579-2586. https://doi.org/10.1111/j.1365-2966.2011.19906.x
[9]
Pathria, R.K. (1972) The Universe as a Black Hole. Nature, 240, 298-299. https://doi.org/10.1038/240298a0
[10]
Zhang, T.X. and Frederick, C. (2013) Acceleration of Black Hole Universe. Astrophysics and Space Science, 349, 567-573. https://doi.org/10.1007/s10509-013-1644-6
[11]
Popławski, N. (2016) Universe in a Black Hole in Einstein-Cartan Gravity. The Astrophysical Journal, 832, Article 96. https://doi.org/10.3847/0004-637x/832/2/96
[12]
Popławski, N. (2021) Gravitational Collapse of a Fluid with Torsion into a Universe in a Black Hole. Journal of Experimental and Theoretical Physics, 132, 374-380. https://doi.org/10.1134/s1063776121030092
[13]
Gaztanaga, E. (2022) The Black Hole Universe, Part II. Symmetry, 14, Article 1984. https://doi.org/10.3390/sym14101984
[14]
Muller, S., Beelen, A., Black, J.H., Curran, S.J., Horellou, C., Aalto, S., et al. (2013) A Precise and Accurate Determination of the Cosmic Microwave Background Temperature at z = 0.89. Astronomy & Astrophysics, 551, A109. https://doi.org/10.1051/0004-6361/201220613
[15]
Dhal, S. and Paul, R.K. (2023) Investigation on CMB Monopole and Dipole Using Blackbody Radiation Inversion. Scientific Reports, 13, Article No. 3316. https://doi.org/10.1038/s41598-023-30414-4
[16]
Hawking, S.W. (1974) Black Hole Explosions? Nature, 248, 30-31. https://doi.org/10.1038/248030a0
[17]
Hawking, S.W. (1976) Black Holes and Thermodynamics. Physical Review D, 13, 191-197. https://doi.org/10.1103/physrevd.13.191
[18]
Haug, E.G. and Tatum, E.T. (2024) The Hawking Hubble Temperature as the Minimum Temperature, the Planck Temperature as the Maximum Temperature, and the CMB Temperature as Their Geometric Mean Temperature. Journal of Applied Mathematics and Physics, 12, 3328-3348. https://doi.org/10.4236/jamp.2024.1210198
[19]
Henderson, R.F. (1965) The Theorem of the Arithmetic and Geometric Means and Its Application to a Problem in Gas Dynamics. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 16, 788-803. https://doi.org/10.1007/bf01614106
[20]
Haug, E.G. (2023) Planck Quantized Bending of Light Leads to the CMB Temperature. https://hal.science/hal-04357053
[21]
Kerr, R.P. (1963) Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters, 11, 237-238. https://doi.org/10.1103/physrevlett.11.237
[22]
Newman, E.T. and Janis, A.I. (1965) Note on the Kerr Spinning-Particle Metric. Journal of Mathematical Physics, 6, 915-917. https://doi.org/10.1063/1.1704350
[23]
Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R. (1965) Metric of a Rotating, Charged Mass. Journal of Mathematical Physics, 6, 918-919. https://doi.org/10.1063/1.1704351
[24]
Haug, E.G. and Spavieri, G. (2023) Mass-Charge Metric in Curved Spacetime. International Journal of Theoretical Physics, 62, Article 248.
[25]
John, M.V. (2019) Rh = ct and the Eternal Coasting Cosmological Model. Monthly Notices of the Royal Astronomical Society: Letters, 484, L35-L37. https://doi.org/10.1093/mnrasl/sly243
[26]
John, M.V. and Joseph, K.B. (2000) Generalized Chen-Wu Type Cosmological Model. Physical Review D, 61, Article ID: 087304. https://doi.org/10.1103/physrevd.61.087304
[27]
John, M.V. and Narlikar, J.V. (2002) Comparison of Cosmological Models Using Bayesian Theory. Physical Review D, 65, Article ID: 043506. https://doi.org/10.1103/physrevd.65.043506
[28]
Melia, F. (2013) The Rh = ct Universe without Inflation. Astronomy & Astrophysics, 553, A76. https://doi.org/10.1051/0004-6361/201220447
[29]
Tatum, E.T. and Seshavatharam, U.V.S. (2018) How a Realistic Linear Rh = ct Model of Cosmology Could Present the Illusion of Late Cosmic Acceleration. Journal of Modern Physics, 9, 1397-1403. https://doi.org/10.4236/jmp.2018.97084
[30]
Lewis, G.F. (2013) Matter Matters: Unphysical Properties of the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 432, 2324-2330. https://doi.org/10.1093/mnras/stt592
[31]
Melia, F. (2014) On Recent Claims Concerning the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 446, 1191-1194. https://doi.org/10.1093/mnras/stu2181
[32]
Melia, F. (2016) The Linear Growth of Structure in the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 464, 1966-1976. https://doi.org/10.1093/mnras/stw2493
[33]
Panchal, K. and Desai, S. (2024) Comparison of ΛCDM and Rh = ct with Updated Galaxy Cluster F Measurements Using Bayesian Inference. Journal of High Energy Astrophysics, 43, 15-19. https://doi.org/10.1016/j.jheap.2024.06.003
[34]
Friedmann, A. (1922) Über die krüng des raumes. Zeitschrift für Physik, 10, Article 377. https://doi.org/10.1007/BF01332580
[35]
Melia, F. (2012) Cosmological Redshift in Friedmann-Robertson-Walker Metrics with Constant Space-Time Curvature. Monthly Notices of the Royal Astronomical Society, 422, 1418-1424. https://doi.org/10.1111/j.1365-2966.2012.20714.x
[36]
Tatum, E.T. and Seshavatharam, U.V.S. (2024) How the Flat Space Cosmology Model Correlates the Recombination CMB Temperature of 3000 K with a Redshift of 1100. Journal of Modern Physics, 15, 174-178. https://doi.org/10.4236/jmp.2024.152008
[37]
Allahverdyan, A.E., Gevorkian, S.G., Dyakov, Y.A. and Wang, P. (2023) Thermodynamic Definition of Mean Temperature. Physical Review E, 108, Article ID: 044112. https://doi.org/10.1103/physreve.108.044112
[38]
Yunyang, L. (2021) Constraining Cosmic Microwave Background Temperature Evolution with Sunyaev-Zel’dovich Galaxy Clusters from the ATACAMA Cosmology Telescope. The Astrophysical Journal, 922, Article 136.
[39]
Riechers, D.A., Weiss, A., Walter, F., Carilli, C.L., Cox, P., Decarli, R., et al. (2022) Microwave Background Temperature at a Redshift of 6.34 from H2O Absorption. Nature, 602, 58-62. https://doi.org/10.1038/s41586-021-04294-5
[40]
Lima, J.A.S., Silva, A.I. and Viegas, S.M. (2000) Is the Radiation Temperature-Redshift Relation of the Standard Cosmology in Accordance with the Data? Monthly Notices of the Royal Astronomical Society, 312, 747-752. https://doi.org/10.1046/j.1365-8711.2000.03172.x
[41]
Chluba, J. (2014) Tests of the CMB Temperature-Redshift Relation, CMB Spectral Distortions and Why Adiabatic Photon Production Is Hard. Monthly Notices of the Royal Astronomical Society, 443, 1881-1888. https://doi.org/10.1093/mnras/stu1260
[42]
Haug, E.G. (2024) The CMB Luminosity Distance and Cosmological Redshifts. Journal of Applied Mathematics and Physics, 12, 3496-3501. https://doi.org/10.4236/jamp.2024.1210207
[43]
Etherington, I.M.H. (1933) LX. On the Definition of Distance in General Relativity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 15, 761-773. https://doi.org/10.1080/14786443309462220
[44]
Hogg, D.W. (2000) Distance Measures in Cosmology. https://doi.org/10.48550/arXiv.astro-ph/9905116
[45]
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
[46]
Capozziello, S. (2020) Addressing the Cosmological H0 Tension by the Heisenberg Uncertainty. Foundations of Physics, 38, Article ID: 184001.
[47]
Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., et al. (2021) In the Realm of the Hubble Tension—A Review of Solutions. Classical and Quantum Gravity, 38, Article ID: 153001. https://doi.org/10.1088/1361-6382/ac086d
[48]
Krishnan, C., Mohayaee, R., Colgáin, E.Ó., Sheikh-Jabbari, M.M. and Yin, L. (2021) Does Hubble Tension Signal a Breakdown in FLRW Cosmology? Classical and Quantum Gravity, 38, Article ID: 184001. https://doi.org/10.1088/1361-6382/ac1a81
[49]
Fixsen, D.J., Kogut, A., Levin, S., Limon, M., Lubin, P., Mirel, P., et al. (2004) The Temperature of the Cosmic Microwave Background at 10 GHz. The Astrophysical Journal, 612, 86-95. https://doi.org/10.1086/421993
[50]
Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920. https://doi.org/10.1088/0004-637x/707/2/916
[51]
Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C. and López, S. (2011) The Evolution of the Cosmic Microwave Background Temperature. Astronomy & Astrophysics, 526, L7. https://doi.org/10.1051/0004-6361/201016140
[52]
Dhal, S., Singh, S., Konar, K. and Paul, R.K. (2023) Calculation of Cosmic Microwave Background Radiation Parameters Using COBE/FIRAS Dataset. Experimental Astronomy, 56, 715-726. https://doi.org/10.1007/s10686-023-09904-w
[53]
Haug, E.G. (2024) Closed Form Solution to the Hubble Tension Based on Rh = ct Cosmology for Generalized Cosmological Redshift Scaling of the Form: z = (Rh/Rt) × −1 Tested against the Full Distance Ladder of observed SN Ia Redshifts. https://doi.org/10.20944/preprints202409.1697.v2
[54]
Tatum, E.T. (2024) Upsilon Constants and Their Usefulness in Planck Scale Quantum Cosmology. Journal of Modern Physics, 15, 167-173. https://doi.org/10.4236/jmp.2024.152007
[55]
Tatum, E.T., Haug, E.G. and Wojnow, S. (2024) Predicting High Precision Hubble Constant Determinations Based on a New Theoretical Relationship between CMB Temperature and H0. Journal of Modern Physics, 15, 1708-1716. https://doi.org/10.4236/jmp.2024.1511075
[56]
Melia, F. (2023) Model Selection with Baryonic Acoustic Oscillations in the Lyman-Α Forest. Europhysics Letters, 143, Article ID: 59004. https://doi.org/10.1209/0295-5075/acf60c
[57]
Melia, F. (2018) A Comparison of the Rh = ct and ΛCDM Cosmologies Using the Cosmic Distance Duality Relation. Monthly Notices of the Royal Astronomical Society, 481, 4855-4862. https://doi.org/10.1093/mnras/sty2596
[58]
Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., et al. (2021) Planck 2018 Results. Astronomy & Astrophysics, 652, C4. https://doi.org/10.1051/0004-6361/201833910e
[59]
Riess, A.G., Yuan, W., Macri, L.M., Scolnic, D., Brout, D., Casertano, S., et al. (2022) A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km S−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. The Astrophysical Journal Letters, 934, L7. https://doi.org/10.3847/2041-8213/ac5c5b
[60]
Murakami, Y.S., Riess, A.G., Stahl, B.E., D’Arcy Kenworthy, W., Pluck, D.A., Macoretta, A., et al. (2023) Leveraging SN Ia Spectroscopic Similarity to Improve the Measurement of H0. Journal of Cosmology and Astroparticle Physics, 2023, Article 046. https://doi.org/10.1088/1475-7516/2023/11/046
[61]
de Jaeger, T., Galbany, L., Riess, A.G., Stahl, B.E., Shappee, B.J., Filippenko, A.V., et al. (2022) A 5 Percent Measurement of the Hubble-Lemaître Constant from Type II Supernovae. Monthly Notices of the Royal Astronomical Society, 514, 4620-4628. https://doi.org/10.1093/mnras/stac1661
[62]
Melia, F. (2023) A Resolution of the Monopole Problem in the Rh = ct Universe. Physics of the Dark Universe, 42, Article ID: 101329. https://doi.org/10.1016/j.dark.2023.101329
[63]
Melia, F. (2024) Strong Observational Support for the Rh = ct Timeline in the Early Universe. Physics of the Dark Universe, 46, Article ID: 101587. https://doi.org/10.1016/j. dark.2024.101587
[64]
Tatum, E.T. and Haug, E.G. (2024) Extracting a Cosmic Age of 14.6 Billion Years from all 580 Type Ia Supernova Redshifts in the Union 2 Database. https://doi.org/10.13140/RG.2.2.28246.87360
[65]
Haug, E.G. and Tatum, E.T. (2024) How a Thermodynamic Version of the Friedmann Equation Appears to Solve the Early Galaxy Formation Problem. https://doi.org/10.20944/preprints202404.0159.v1
[66]
Haug, E.G. (2024) A New Look at the Radiation Density Parameter in Cosmology. https://doi.org/10.13140/RG.2.2.20965.82400
[67]
Rowland, L.E., Hodge, J., Bouwens, R., Piña, P.E.M., Hygate, A., Algera, H., et al. (2024) REBELS-25: Discovery of a Dynamically Cold Disc Galaxy at Z = 7.31. Monthly Notices of the Royal Astronomical Society, 535, 2068-2091. https://doi.org/10.1093/mnras/stae2217
[68]
Tatum, E.T. and Haug, E.G. (2024) Predicting Dark Energy Survey Results within the Haug-Tatum Cosmology Model. Journal of Modern Physics, 15, 2220-2227. https://doi.org/10.4236/jmp.2024.1512089
[69]
Haug, E.G. and Tatum, E.T. (2024) Friedmann Type Equations in Thermodynamic Form Lead to Much Tighter Constraints on the Critical Density of the Universe. https://www.preprints.org/manuscript/202403.1241/v2