全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Asymptotic Behaviors of Hankel Determinants Whose Entries Involve Regularly- or Rapidly-Varying Functions. Part II*

DOI: 10.4236/apm.2025.152006, PP. 119-144

Keywords: Asymptotic Behaviors of Hankel Determinants, Asymptotic Expansions in the Real Domain, Regularly-, Rapidly- and Exponentially-Varying Functions of Higher Order, Algebraic Identities for Hankelians

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.

References

[1]  Granata, A. (2024) Asymptotic Behaviors of Hankel Determinants Whose Entries Involve Regularly-or Rapidly-Varying Functions as the Variable Tends to +∞. Part I. Advances in Pure Mathematics, 14, 817-858.
https://doi.org/10.4236/apm.2024.1411046
[2]  Granata, A. (2017) Asymptotic Behaviors of Wronskians and Finite Asymptotic Expansions in the Real Domain. Part I: Scales of Regularly-or Rapidly-Varying Functions. International Journal of Advanced Research in Mathematics, 9, 1-33.
https://doi.org/10.18052/www.scipress.com/IJARM.9.1
[3]  Granata, A. (2016) The Theory of Higher-Order Types of Asymptotic Variation for Differentiable Functions. Part II: Algebraic Operations and Types of Exponential Variation. Advances in Pure Mathematics, 6, 817-867.
https://doi.org/10.4236/apm.2016.612064
[4]  Granata, A. (2016) The Theory of Higher-Order Types of Asymptotic Variation for Differentiable Functions. Part I: Higher-Order Regular, Smooth and Rapid Variation. Advances in Pure Mathematics, 6, 776-816.
https://doi.org/10.4236/apm.2016.612063
[5]  Granata, A. (2019) Complements to the Theory of Higher-Order Types of Asymptotic Variation for Differentiable Functions. Advances in Pure Mathematics, 9, 434-479.
https://doi.org/10.4236/apm.2019.95022
[6]  Karlin, S. (1968) Total Positivity, Vol. I. Stanford University Press.
[7]  Radoux, C. (1991) Déterminant de Hankel Construit sur les Polynômes de Hermite. Annales de la Société Scientifique de Bruxelles, 104, 59-61.
[8]  Radoux, C. (1979) Calcul Effectif de Certains Déterminants de Hankel. Bulletin de la Société Mathématique de Belgique Série B, 31, 49-55.
[9]  Radoux, C. (1991) Déterminant de Hankel Construit sur des Polynômes Liés aux Nombres de Dérangements. European Journal of Combinatorics, 12, 327-329.
https://doi.org/10.1016/S0195-6698(13)80115-1
[10]  Granata, A. (2018) Asymptotic Behaviors of Wronskians and Finite Asymptotic Expansions in the Real Domain. Part II: Mixed Scales and Exceptional Cases. International Journal of Advanced Research in Mathematics, 12, 35-68.
https://doi.org/10.18052/www.scipress.com/IJARM.12.35
[11]  Browne, P.J. and Nillsen, R. (1980) The Two-Sided Factorization of Ordinary Differential Operators. Canadian Journal of Mathematics, 32, 1045-1057.
https://doi.org/10.4153/CJM-1980-080-5
[12]  Granata, A. (2021) Operations with Higher-Order Types of Asymptotic Variation: Filling Some Gaps. Advances in Pure Mathematics, 11, 687-716.
https://doi.org/10.4236/apm.2021.118046
[13]  Barenblatt, G.I. (1966) Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133