Modern medicine faces the formidable challenge of cancer because of its ability to evade immune surveillance and cultivate resistance to conventional therapies. Cancer cells, when overexpressed with CD47, send a “don’t eat me” signal to macrophages, successfully shielding them from immune destruction. Similarly, tyrosine kinase inhibitors (TKIs) have revolutionized cancer treatment by targeting oncogenic pathways, but their effectiveness is often compromised by resistance and minimal residual disease. This review explores a novel combination of CD47-SIRP-blockade and TKIs, addressing the limitations of monotherapies in cancer treatment. Disrupting the CD47-SIRPα interaction stimulates macrophage-mediated phagocytosis and revives exhausted T cells, while TKIs simultaneously target tumor growth drivers. Confirmation from preclinical studies indicates that this combination is capable of enhancing anti-tumor immunity and remodeling tumor microenvironments for enhanced therapeutic outcomes. However, hematotoxicity and tumor heterogeneity present challenges in the path to clinical translation. This review presents current findings, identifies key research areas, and proposes future directions to enhance this combinatorial approach. In the midst of a new era in cancer treatment, immune modulation combined with targeted therapies promises to offer more effective, less toxic, and personalized treatment options. This combination approach has the potential to significantly improve cancer treatment strategies by overcoming current therapeutic limitations.
References
[1]
Ciriello, G., Magnani, L., Aitken, S.J., Akkari, L., Behjati, S., Hanahan, D., et al. (2023) Cancer Evolution: A Multifaceted Affair. CancerDiscovery, 14, 36-48. https://doi.org/10.1158/2159-8290.cd-23-0530
[2]
Barclay, A.N. and van den Berg, T.K. (2014) The Interaction between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. AnnualReviewofImmunology, 32, 25-50. https://doi.org/10.1146/annurev-immunol-032713-120142
[3]
Josef, K., Jan, N., Jaroslav, M. and Oleksandr, N. (2013) Mathematical Model for Cancer Prevalence and Cancer Mortality. https://tvim.su/files/044-054%20Kalas%20Novotny%20Michalek%20Nakonechny.pdf
[4]
Lunt, N. (2023) The Global Challenge of Cancer Governance. World Medical & HealthPolicy, 15, 672-681. https://doi.org/10.1002/wmh3.577
[5]
Cabanos, H.F. and Hata, A.N. (2021) Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers, 13, Article 2666. https://doi.org/10.3390/cancers13112666
[6]
Mancini, C., Lori, G., Pranzini, E. and Taddei, M.L. (2024) Metabolic Challengers Selecting Tumor-Persistent Cells. TrendsinEndocrinology&Metabolism, 35, 263-276. https://doi.org/10.1016/j.tem.2023.11.005
[7]
Chuang, C., Zhen, Y., Ma, J., Lee, T., Hung, H., Wu, C., et al. (2024) CD47-Mediated Immune Evasion in Early-Stage Lung Cancer Progression. BiochemicalandBiophysicalResearchCommunications, 720, Article ID: 150066. https://doi.org/10.1016/j.bbrc.2024.150066
[8]
Polara, R., Ganesan, R., Pitson, S.M. and Robinson, N. (2024) Cell Autonomous Functions of CD47 in Regulating Cellular Plasticity and Metabolic Plasticity. CellDeath&Differentiation, 31, 1255-1266. https://doi.org/10.1038/s41418-024-01347-w
[9]
Abd alkareem, F.O. and Mohamad, B.J. (2024) Immunohistochemical Expression and Histopathological Role of CD47 in Colorectal Cancer in Iraqi Patients. JournaloftheFacultyofMedicineBaghdad, 66, 122-128. https://doi.org/10.32007/jfacmedbagdad.6622275
[10]
Xing, L., Wang, Z., Feng, Y., Luo, H., Dai, G., Sang, L., et al. (2024) The Biological Roles of CD47 in Ovarian Cancer Progression. Cancer Immunology, Immunotherapy, 73, Article No. 145. https://doi.org/10.1007/s00262-024-03708-3
[11]
Wu, F., Pang, H., Li, F., Hua, M., Song, C. and Tang, J. (2024) Progress in Cancer Research on the Regulator of Phagocytosis CD47, Which Determines the Fate of Tumor Cells (Review). OncologyLetters, 27, Article No. 256. https://doi.org/10.3892/ol.2024.14389
[12]
Yang, Y., Wu, H., Yang, Y., Kang, Y., He, R., Zhou, B., et al. (2023) Dual Blockade of CD47 and CD24 Signaling Using a Novel Bispecific Antibody Fusion Protein Enhances Macrophage Immunotherapy. Molecular Therapy—Oncolytics, 31, Article ID: 100747. https://doi.org/10.1016/j.omto.2023.100747
[13]
Sue, M., Tsubaki, T., Ishimoto, Y., Hayashi, S., Ishida, S., Otsuka, T., et al. (2024) Blockade of SIRPα-Cd47 Axis by Anti-SIRPα Antibody Enhances Anti-Tumor Activity of DXd Antibody-Drug Conjugates. PLOSONE, 19, e0304985. https://doi.org/10.1371/journal.pone.0304985
[14]
Hussain, S., Mursal, M., Verma, G., Hasan, S.M. and Khan, M.F. (2024) Targeting Oncogenic Kinases: Insights on FDA Approved Tyrosine Kinase Inhibitors. European JournalofPharmacology, 970, Article ID: 176484. https://doi.org/10.1016/j.ejphar.2024.176484
[15]
Li, J., Gong, C., Zhou, H., Liu, J., Xia, X., Ha, W., et al. (2024) Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. InternationalJournalofMolecularSciences, 25, Article No. 5489. https://doi.org/10.3390/ijms25105489
[16]
Jie, X.-L., Kong, Y.-Y. and Zhou, G.-B. (2023) Latest Findings on the Role of CD47 in Tumor Immune Evasion and Related Targeted Therapies. Journal of Sichuan University. Medical Science Edition, 54, 455-461.
[17]
Hu, L., Zhuang, W., Chen, M., Liao, J., Wu, D., Zhang, Y., et al. (2024) EGFR Oncogenic Mutations in NSCLC Impair Macrophage Phagocytosis and Mediate Innate Immune Evasion through Up-Regulation of CD47. Journal of Thoracic Oncology, 19, 1186-1200. https://doi.org/10.1016/j.jtho.2024.03.019
[18]
Liang, H., Zheng, Y., Huang, Z., Dai, J., Yao, L., Xie, D., et al. (2024) Pan-Cancer Analysis for the Prognostic and Immunological Role of CD47: Interact with TNFRSF9 Inducing CD8+ T Cell Exhaustion. DiscoverOncology, 15, Article No. 149. https://doi.org/10.1007/s12672-024-00951-z
[19]
Liu, Y., Weng, L., Wang, Y., Zhang, J., Wu, Q., Zhao, P., et al. (2024) Deciphering the Role of CD47 in Cancer Immunotherapy. Journal of Advanced Research, 63, 129-158. https://doi.org/10.1016/j.jare.2023.10.009
[20]
Huang, K., Liu, Y., Wen, S., Zhao, Y., Ding, H., Liu, H., et al. (2023) Binding Mechanism of CD47 with SIRPα Variants and Its Antibody: Elucidated by Molecular Dynamics Simulations. Molecules, 28, Article No. 4610. https://doi.org/10.3390/molecules28124610
[21]
Morrissey, M.A., Kern, N. and Vale, R.D. (2020) CD47 Ligation Repositions the Inhibitory Receptor SIRPA to Suppress Integrin Activation and Phagocytosis. Immunity, 53, 290-302.e6. https://doi.org/10.1016/j.immuni.2020.07.008
[22]
Wang, J., Tseng, C., Teng, H., Kuo, P., Cheng, Y., Chen, Y., et al. (2022) 496 HCB101: A Safe and Effective Ligand Trap Therapeutic Targeting the CD47-SIRPα Signaling Pathway for Cancer Treatment. Journal for ImmunoTherapy of Cancer, 10, A517.
[23]
Wang, B., Pan, L., Chen, M., Ma, Y., Gao, J., Tang, D., et al. (2023) SIRP-Alpha-IL-6 Axis Induces Immunosuppressive Macrophages in Non-Small-Cell Lung Cancer. BiochemicalandBiophysicalResearchCommunications, 682, 386-396. https://doi.org/10.1016/j.bbrc.2023.10.035
[24]
Chen, W., Li, X., Wang, J., Song, N., Zhu, A. and Jia, L. (2019) miR-378a Modulates Macrophage Phagocytosis and Differentiation through Targeting CD47-SIRPα Axis in Atherosclerosis. ScandinavianJournalofImmunology, 90, e12766. https://doi.org/10.1111/sji.12766
[25]
Gajendran, N., Hernandez, M.G., Yende, A., Alahmadi, Z., Li, X., Munoz, Z., et al. (2023) Abstract 666: Targeting the CD47/SIRPα “Do Not Eat Me” Phagocytic Pathway in Macrophages to Improve Anti-CD47 Immune Therapy. CancerResearch, 83, 666-666. https://doi.org/10.1158/1538-7445.am2023-666
[26]
Wang, Q.Q., et al. (2023) Evaluation of CD47 in the Suppressive Tumor Microenvironment and Immunotherapy in Prostate Cancer. Journal of Immunology Research, 2023, Article ID: 2473075.
[27]
Zimarino, C., Moody, W., Davidson, S.E., Munir, H. and Shields, J.D. (2024) Disruption of CD47-SIRPα Signaling Restores Inflammatory Function in Tumor-Associated Myeloid-Derived Suppressor Cells. iScience, 27, Article ID: 109546. https://doi.org/10.1016/j.isci.2024.109546
[28]
Biedermann, A., Patra-Kneuer, M., Mougiakakos, D., Büttner-Herold, M., Mangelberger-Eberl, D., Berges, J., et al. (2024) Blockade of the CD47/SIRPα Checkpoint Axis Potentiates the Macrophage-Mediated Anti-Tumor Efficacy of Tafasitamab. Haematologica, 109, 3928-3940. https://doi.org/10.3324/haematol.2023.284795
[29]
Lim, H.Y., Ahn, J.S., Park, J.O., Yong Hong, J., Seon, H., Lee, J.K., et al. (2023) 1035P Phase I Dose Escalation Study of IMC-002, a Novel Anti-Cd47 Monoclonal Antibody, in Patients with Advanced Solid Tumors. AnnalsofOncology, 34, S629. https://doi.org/10.1016/j.annonc.2023.09.2174
[30]
Zhang, Q., Liu, A., Shi, J., Cai, Q., Qu, Z., Liu, S., et al. (2023) A First-in-Human Study of MIL95, an Anti-CD47 Monoclonal Antibody (mAb), in Patients with Advanced Solid Tumors and Lymphomas. JournalofClinicalOncology, 41, e14513. https://doi.org/10.1200/jco.2023.41.16_suppl.e14513
[31]
Osorio, J.C., Smith, P., Knorr, D.A. and Ravetch, J.V. (2023) The Antitumor Activities of Anti-CD47 Antibodies Require Fc-FcγR Interactions. Cancer Cell, 41, 2051-2065.e6. https://doi.org/10.1016/j.ccell.2023.10.007
[32]
Li, Y., Liu, J., Chen, W., Wang, W., Yang, F., Liu, X., et al. (2023) A pH-Dependent Anti-CD47 Antibody That Selectively Targets Solid Tumors and Improves Therapeutic Efficacy and Safety. JournalofHematology&Oncology, 16, Article No. 2. https://doi.org/10.1186/s13045-023-01399-4
[33]
Tian, W., Li, S., Chen, D., Yang, Y., Guo, H., Liu, D., et al. (2024) Abstract LB129: Preclinical Development of a Bispecific Antibody-Trap Selectively Targeting CD38 and CD47 for Treating Hematologic Malignancies. CancerResearch, 84, LB129. https://doi.org/10.1158/1538-7445.am2024-lb129
[34]
Baek, B.S., Kim, M.G., Kim, J.H., Jang, I.Y., Kim, S.M., Kim, J.H., et al. (2024) Abstract 2719: Papiliximab, a Bispecific Nanobody Targeting CD47 and PDL1 Retards Tumor Growth without Hemolysis. CancerResearch, 84, 2719-2719. https://doi.org/10.1158/1538-7445.am2024-2719
[35]
Zhang, K., Xu, Y., Chang, X., Xu, C., Xue, W., Ding, D., et al. (2024) Co-Targeting CD47 and VEGF Elicited Potent Anti-Tumor Effects in Gastric Cancer. Cancer Immunology, Immunotherapy, 73, Article No. 75. https://doi.org/10.1007/s00262-024-03667-9
[36]
Combarel, D., Dousset, L., Bouchet, S., Ferrer, F., Tetu, P., Lebbe, C., et al. (2024) Tyrosine Kinase Inhibitors in Cancers: Treatment Optimization—Part I. Critical ReviewsinOncology/Hematology, 199, Article ID: 104384. https://doi.org/10.1016/j.critrevonc.2024.104384
[37]
Ferrer, F., Tetu, P., Dousset, L., Lebbe, C., Ciccolini, J., Combarel, D., et al. (2024) Tyrosine Kinase Inhibitors in Cancers: Treatment Optimization—Part II. Critical ReviewsinOncology/Hematology, 200, Article ID: 104385. https://doi.org/10.1016/j.critrevonc.2024.104385
[38]
Costa, A., Abruzzese, E., Latagliata, R., Mulas, O., Carmosino, I., Scalzulli, E., et al. (2024) Safety and Efficacy of TKIs in Very Elderly Patients (≥75 Years) with Chronic Myeloid Leukemia. JournalofClinicalMedicine, 13, Article No. 273. https://doi.org/10.3390/jcm13010273
[39]
Zhang, X.S, Liu, B.C., Huang, J., et al. (2024) A Predictive Model for Therapy Failure in Chronic Myeloid Leukemia Patients Receiving Tyro-Sine Kinase Inhibitor Therapy. Blood, 144, 1951-1961.
[40]
Jeong, S.U., Park, J., Yoon, S.Y., Hwang, H.S., Go, H., Shin, D., et al. (2024) Ifitm3-Mediated Activation of TRAF6/MAPK/AP-1 Pathways Induces Acquired TKI Resistance in Clear Cell Renal Cell Carcinoma. InvestigativeandClinicalUrology, 65, 84-93. https://doi.org/10.4111/icu.20230294
[41]
Wang, Q., Yang, S., Wang, K. and Sun, S. (2019) MET Inhibitors for Targeted Therapy of EGFR TKI-Resistant Lung Cancer. JournalofHematology&Oncology, 12, Article No. 63. https://doi.org/10.1186/s13045-019-0759-9
[42]
Stone, L. (2017) Targeted Therapies: Reversal of Fortunes for TKI Resistance. NatureReviewsClinicalOncology, 14, 263-263. https://doi.org/10.1038/nrclinonc.2017.33
[43]
Park, H., Kim, S., Keam, B., Chung, H., Seok, S.H., Kim, S., et al. (2022) Blockade of CD47 Enhances the Antitumor Effect of Macrophages in Renal Cell Carcinoma through Trogocytosis. ScientificReports, 12, Article No. 12546. https://doi.org/10.1038/s41598-022-16766-3
[44]
Li, B., Hao, Y., He, H., Fan, Y., Ren, B., Peng, X., et al. (2024) CD47-SIRPα Blockade Sensitizes Head and Neck Squamous Cell Carcinoma to Cetuximab by Enhancing Macrophage Adhesion to Cancer Cells. CancerResearch, 84, 3189-3206. https://doi.org/10.1158/0008-5472.can-24-0176
[45]
Nishiga, Y., Drainas, A.P., Baron, M., Bhattacharya, D., Barkal, A.A., Ahrari, Y., et al. (2022) Radiotherapy in Combination with CD47 Blockade Elicits a Macrophage-Mediated Abscopal Effect. NatureCancer, 3, 1351-1366. https://doi.org/10.1038/s43018-022-00456-0
[46]
Tang, L., Yin, Y., Cao, Y., Fu, C., Liu, H., Feng, J., et al. (2023) Extracellular Vesicles‐derived Hybrid Nanoplatforms for Amplified CD47 Blockade‐Based Cancer Immunotherapy. AdvancedMaterials, 35, e2303835. https://doi.org/10.1002/adma.202303835
[47]
Shen, Y., Ji, M., Yi, H., Shen, R., Fu, D., Cheng, S., et al. (2024) CD47 Overexpression Is Related to Tumour‐Associated Macrophage Infiltration and Diffuse Large B-Cell Lymphoma Progression. Clinical and Translational Medicine, 14, e1532. https://doi.org/10.1002/ctm2.1532
[48]
Boardman, A.P., James, S. and Van Den Brink, M.R.M. (2023) Targeting CD47 in Lymphoid Malignancies with CAR T Cells. JournalofClinicalOncology, 41, 2513-2513. https://doi.org/10.1200/jco.2023.41.16_suppl.2513
[49]
Masroni, M.S.b., Leong, S.M., Cheng, H., Lim, G.S., Heng, N.Z.Y., Law, C.T., et al. (2023) miR‐101‐5p Modulation of CD47 in Diffuse Large B‐Cell Lymphoma: Implications for Anti‐CD47 Immunotherapy and Prognostication. British Journal of Haematology, 204, 730-734. https://doi.org/10.1111/bjh.19264
[50]
Jiang, C., Sun, H., Jiang, Z., Tian, W., Cang, S. and Yu, J. (2024) Targeting the CD47/SIRPα Pathway in Malignancies: Recent Progress, Difficulties and Future Perspectives. Frontiers in Oncology, 14, Article ID: 1378647. https://doi.org/10.3389/fonc.2024.1378647
[51]
Chen, Y., Shi, W., Shi, J. and Lu, J. (2021) Progress of CD47 Immune Checkpoint Blockade Agents in Anticancer Therapy: A Hematotoxic Perspective. Journal of Cancer ResearchandClinicalOncology, 148, 1-14. https://doi.org/10.1007/s00432-021-03815-z
[52]
Fu, Z., Feng, M., Wu, J., Liu, B., Fu, J. and Song, W. (2024) Photodynamic Therapy Synergizes CD47 Blockade Strategy for Enhanced Antitumor Therapy. Molecular Pharmaceutics, 21, 3897-3908. https://doi.org/10.1021/acs.molpharmaceut.4c00254
[53]
Hilinski, G., Stearns, B., Vibhute, S., Hughes, T., Tridandapani, S., Johnstone, M.E., et al. (2023) The Potent Dihydroorotate Dehydrogenase Inhibitor, Hosu-53, Exhibits Compelling Monotherapy Efficacy in Multiple Myeloma and Augments CD47 Targeted Therapy. Blood, 142, 4692-4692. https://doi.org/10.1182/blood-2023-189238
Wang, T., Wang, S., Du, Y., Sun, D., Liu, C., Liu, S., et al. (2024) Gentulizumab, a Novel Anti-Cd47 Antibody with Potent Antitumor Activity and Demonstrates a Favorable Safety Profile. JournalofTranslationalMedicine, 22, Article No. 220. https://doi.org/10.1186/s12967-023-04710-6
[56]
Puro, R.J., Bouchlaka, M.N., Hiebsch, R.R., Capoccia, B.J., Donio, M.J., Manning, P.T., et al. (2020) Development of AO-176, a Next-Generation Humanized Anti-Cd47 Antibody with Novel Anticancer Properties and Negligible Red Blood Cell Binding. MolecularCancerTherapeutics, 19, 835-846. https://doi.org/10.1158/1535-7163.mct-19-1079
[57]
Zhuang, Z., Zhou, J., Qiu, M., Li, J., Lin, Z., Yi, H., et al. (2024) The Combination of Anti-CD47 Antibody with CTLA4 Blockade Enhances Anti-Tumor Immunity in Non-Small Cell Lung Cancer via Normalization of Tumor Vasculature and Reprogramming of the Immune Microenvironment. Cancers, 16, Article No. 832. https://doi.org/10.3390/cancers16040832
[58]
Lau, A.P.Y., Khavkine Binstock, S.S. and Thu, K.L. (2023) CD47: The Next Frontier in Immune Checkpoint Blockade for Non-Small Cell Lung Cancer. Cancers, 15, Article No. 5229. https://doi.org/10.3390/cancers15215229
[59]
Du, L., Su, Z., Wang, S., Meng, Y., Xiao, F., Xu, D., et al. (2023) EGFR‐Induced and C‐SRC‐Mediated CD47 Phosphorylation Inhibits Trim21‐Dependent Polyubiquitylation and Degradation of CD47 to Promote Tumor Immune Evasion. Advanced Science, 10, Article ID: 2206380. https://doi.org/10.1002/advs.202206380
[60]
Wang, C., Feng, Y., Patel, D., Xie, H., Lv, Y. and Zhao, H. (2023) The Role of CD47 in Non-Neoplastic Diseases. Heliyon, 9, e22905. https://doi.org/10.1016/j.heliyon.2023.e22905
[61]
Zhou, H., Wang, W., Xu, H., Liang, Y., Ding, J., Lv, M., et al. (2024) Metabolic Reprograming Mediated by Tumor Cell-Intrinsic Type I IFN Signaling Is Required for CD47-SIRPα Blockade Efficacy. NatureCommunications, 15, Article No. 5759. https://doi.org/10.1038/s41467-024-50136-z
[62]
Jin, S., Wang, H., Li, Y., Yang, J., Li, B., Shi, P., et al. (2024) Discovery of a Novel Small Molecule as CD47/SIRPα and PD-1/PD-L1 Dual Inhibitor for Cancer Immunotherapy. CellCommunicationandSignaling, 22, Article No. 173. https://doi.org/10.1186/s12964-024-01555-4