全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可吸收生物膜在牙周引导组织再生中的研究进展
Progress in Resorbable Biomimetic Membranes for Periodontal Guided Tissue Regeneration

DOI: 10.12677/jcpm.2025.41088, PP. 606-613

Keywords: 牙周引导组织再生术,可吸收生物膜,生物材料,组织工程
Guided Tissue Regeneration
, Resorbable Membranes, Biomaterials, Tissue Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

牙周组织缺损是牙周炎治疗的难点,传统治疗方法难以有效恢复牙周组织的结构和功能。引导组织再生术(Guided Tissue Regeneration, GTR)作为一种再生医学技术,利用生物屏障膜隔离牙周缺损区域,为牙周组织再生创造有利空间,从而促进牙周功能的恢复。可吸收生物膜因其无需二次手术取出、生物相容性好、可控降解等优势,成为GTR的理想材料。本文综述了不同种类可吸收生物膜在GTR中的研究进展,重点关注其理化特性、生物学效应以及临床应用效果,并探讨了该领域目前存在的挑战及未来研究方向,旨在为GTR的临床实践提供指导并推动治疗方式优化。
Periodontal tissue defects, characterized by gingival recession and alveolar bone loss, pose significant challenges in periodontitis treatment, as conventional therapies often fail to fully restore tissue structure and function. Guided tissue regeneration (GTR) offers a regenerative medicine approach, employing barrier membranes to isolate the defect site and foster a conducive environment for periodontal tissue regeneration, ultimately promoting functional recovery. Resorbable membranes, owing to their advantages of eliminating the need for a second surgical procedure, coupled with favorable biocompatibility and controlled degradation profiles, have emerged as ideal GTR materials. This review summarizes the research progress of various resorbable membranes in GTR, focusing on their physicochemical properties, biological effects, and clinical outcomes. Furthermore, it explores current challenges and future research directions in this field, aiming to inform and enhance clinical practice in GTR.

References

[1]  Caton, J.G., Armitage, G., Berglundh, T., Chapple, I.L.C., Jepsen, S., Kornman, K.S., et al. (2018) A New Classification Scheme for Periodontal and Peri-Implant Diseases and Conditions—Introduction and Key Changes from the 1999 Classification. Journal of Clinical Periodontology, 45, S1-S8.
https://doi.org/10.1111/jcpe.12935
[2]  Genco, R.J. and Sanz, M. (2020) Clinical and Public Health Implications of Periodontal and Systemic Diseases: An Overview. Periodontology 2000, 83, 7-13.
https://doi.org/10.1111/prd.12344
[3]  Mizraji, G., Davidzohn, A., Gursoy, M., Gursoy, U.K., Shapira, L. and Wilensky, A. (2023) Membrane Barriers for Guided Bone Regeneration: An Overview of Available Biomaterials. Periodontology 2000, 93, 56-76.
https://doi.org/10.1111/prd.12502
[4]  Yilmaz, C., Ersanli, S., Karabagli, M., Olgac, V. and Bolukbasi Balcioglu, N. (2021) May Autogenous Grafts Increase the Effectiveness of Hyalonect Membranes in Intraosseous Defects: An Experimental in Vivo Study. Medicina, 57, Article 430.
https://doi.org/10.3390/medicina57050430
[5]  Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M. and Ramakrishna, S. (2021) Collagen-Based Biomaterials for Biomedical Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109, 1986-1999.
https://doi.org/10.1002/jbm.b.34881
[6]  Kasaj, A., Reichert, C., Götz, H., Röhrig, B., Smeets, R. and Willershausen, B. (2008) In Vitro Evaluation of Various Bioabsorbable and Non-Resorbable Barrier Membranes for Guided Tissue Regeneration. Head & Face Medicine, 4, Article No. 22.
https://doi.org/10.1186/1746-160x-4-22
[7]  Ghanaati, S. (2012) Non-Cross-Linked Porcine-Based Collagen I-III Membranes Do Not Require High Vascularization Rates for Their Integration within the Implantation Bed: A Paradigm Shift. Acta Biomaterialia, 8, 3061-3072.
https://doi.org/10.1016/j.actbio.2012.04.041
[8]  Peng, F., Zhang, X., Wang, Y., Zhao, R., Cao, Z., Chen, S., et al. (2023) Guided Bone Regeneration in Long-Bone Defect with a Bilayer Mineralized Collagen Membrane. Collagen and Leather, 5, Article No. 36.
https://doi.org/10.1186/s42825-023-00144-4
[9]  Rossato, A., Mathias-Santamaria, I., Ferraz, L., Bautista, C., Miguel, M. and Santamaria, M. (2022) Xenogeneic Acellular Dermal Matrix for the Treatment of Multiple Gingival Recessions Associated with Partially Restored Noncarious Cervical Lesions. The International Journal of Periodontics & Restorative Dentistry, 42, 817-824.
https://doi.org/10.11607/prd.5260
[10]  Elango, J., Bu, Y., Bin, B., Geevaretnam, J., Robinson, J.S. and Wu, W. (2017) Effect of Chemical and Biological Cross-Linkers on Mechanical and Functional Properties of Shark Catfish Skin Collagen Films. Food Bioscience, 17, 42-51.
https://doi.org/10.1016/j.fbio.2016.12.002
[11]  Sanz, M., Dahlin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., et al. (2019) Biomaterials and Regenerative Technologies Used in Bone Regeneration in the Craniomaxillofacial Region: Consensus Report of Group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. Journal of Clinical Periodontology, 46, 82-91.
https://doi.org/10.1111/jcpe.13123
[12]  Li, T., Long, H., Niu, W. and Feng, B. (2023) The Repair and Regeneration Mechanism of Platelet-Rich Fibrin-Promoting Tissue after Alveolar Bone Defect through the Notch Pathway. Cellular and Molecular Biology, 69, 85-90.
https://doi.org/10.14715/cmb/2023.69.7.14
[13]  何杨, 肖帅, 李逦, 等. 富血小板纤维蛋白对人牙周膜细胞成骨能力、炎症因子表达和Wnt/β-catenin信号通路的影响[J]. 现代生物医学进展, 2022, 22(6): 1180-1185+1097.
[14]  Tavelli, L., McGuire, M.K., Zucchelli, G., Rasperini, G., Feinberg, S.E., Wang, H., et al. (2019) Extracellular Matrix-Based Scaffolding Technologies for Periodontal and Peri-Implant Soft Tissue Regeneration. Journal of Periodontology, 91, 17-25.
https://doi.org/10.1002/jper.19-0351
[15]  Fujioka-Kobayashi, M., Miron, R.J., Hernandez, M., Kandalam, U., Zhang, Y. and Choukroun, J. (2017) Optimized Platelet-Rich Fibrin with the Low-Speed Concept: Growth Factor Release, Biocompatibility, and Cellular Response. Journal of Periodontology, 88, 112-121.
https://doi.org/10.1902/jop.2016.160443
[16]  Di Martino, A., Sittinger, M. and Risbud, M.V. (2005) Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering. Biomaterials, 26, 5983-5990.
https://doi.org/10.1016/j.biomaterials.2005.03.016
[17]  Phuangkaew, T., Booranabunyat, N., Kiatkamjornwong, S., Thanyasrisung, P. and Hoven, V.P. (2022) Amphiphilic Quaternized Chitosan: Synthesis, Characterization, and Anti-Cariogenic Biofilm Property. Carbohydrate Polymers, 277, Article 118882.
https://doi.org/10.1016/j.carbpol.2021.118882
[18]  Niu, X., Wang, L., Xu, M., Qin, M., Zhao, L., Wei, Y., et al. (2021) Electrospun Polyamide-6/Chitosan Nanofibers Reinforced Nano-Hydroxyapatite/Polyamide-6 Composite Bilayered Membranes for Guided Bone Regeneration. Carbohydrate Polymers, 260, Article 117769.
https://doi.org/10.1016/j.carbpol.2021.117769
[19]  He, Y., Jin, Y., Wang, X., Yao, S., Li, Y., Wu, Q., et al. (2018) An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. Nanomaterials, 8, Article 327.
https://doi.org/10.3390/nano8050327
[20]  Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L. and Filho, R.M. (2012) Poly-Lactic Acid Synthesis for Application in Biomedical Devices—A Review. Biotechnology Advances, 30, 321-328.
https://doi.org/10.1016/j.biotechadv.2011.06.019
[21]  Lu, J., Sun, C., Yang, K., Wang, K., Jiang, Y., Tusiime, R., et al. (2019) Properties of Polylactic Acid Reinforced by Hydroxyapatite Modified Nanocellulose. Polymers, 11, Article 1009.
https://doi.org/10.3390/polym11061009
[22]  Sharif, F., Tabassum, S., Mustafa, W., Asif, A., Zarif, F., Tariq, M., et al. (2018) Bioresorbable Antibacterial PCL-PLA-nHA Composite Membranes for Oral and Maxillofacial Defects. Polymer Composites, 40, 1564-1575.
https://doi.org/10.1002/pc.24899
[23]  da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., et al. (2018) Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chemical Engineering Journal, 340, 9-14.
https://doi.org/10.1016/j.cej.2018.01.010
[24]  Chen, S., Hao, Y., Cui, W., Chang, J. and Zhou, Y. (2013) Biodegradable Electrospun PLLA/Chitosan Membrane as Guided Tissue Regeneration Membrane for Treating Periodontitis. Journal of Materials Science, 48, 6567-6577.
https://doi.org/10.1007/s10853-013-7453-z
[25]  Low, Y.J., Andriyana, A., Ang, B.C. and Zainal Abidin, N.I. (2020) Bioresorbable and Degradable Behaviors of PGA: Current State and Future Prospects. Polymer Engineering & Science, 60, 2657-2675.
https://doi.org/10.1002/pen.25508
[26]  Lin, C. and Chiu, J. (2021) Glycerol-modified Γ-PGA and Gellan Composite Hydrogel Materials with Tunable Physicochemical and Thermal Properties for Soft Tissue Engineering Application. Polymer, 230, Article 124049.
https://doi.org/10.1016/j.polymer.2021.124049
[27]  Malikmammadov, E., Tanir, T.E., Kiziltay, A., Hasirci, V. and Hasirci, N. (2017) PCL and PCL-Based Materials in Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 29, 863-893.
https://doi.org/10.1080/09205063.2017.1394711
[28]  Lee, S.J., Lee, D., Yoon, T.R., Kim, H.K., Jo, H.H., Park, J.S., et al. (2016) Surface Modification of 3d-Printed Porous Scaffolds via Mussel-Inspired Polydopamine and Effective Immobilization of Rhbmp-2 to Promote Osteogenic Differentiation for Bone Tissue Engineering. Acta Biomaterialia, 40, 182-191.
https://doi.org/10.1016/j.actbio.2016.02.006
[29]  Yin, S., Zhang, W., Zhang, Z. and Jiang, X. (2019) Recent Advances in Scaffold Design and Material for Vascularized Tissue-Engineered Bone Regeneration. Advanced Healthcare Materials, 8, Article 1801433.
https://doi.org/10.1002/adhm.201801433
[30]  Chen, X., Lin, Z., Feng, Y., Tan, H., Xu, X., Luo, J., et al. (2019) Zwitterionic PMCP-Modified Polycaprolactone Surface for Tissue Engineering: Antifouling, Cell Adhesion Promotion, and Osteogenic Differentiation Properties. Small, 15, Article 1903784.
https://doi.org/10.1002/smll.201903784
[31]  Lian, M., Sun, B., Qiao, Z., Zhao, K., Zhou, X., Zhang, Q., et al. (2019) Bi-Layered Electrospun Nanofibrous Membrane with Osteogenic and Antibacterial Properties for Guided Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 176, 219-229.
https://doi.org/10.1016/j.colsurfb.2018.12.071
[32]  Masoudi Rad, M., Nouri Khorasani, S., Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Foroughi, M.R., Kharaziha, M., et al. (2017) Fabrication and Characterization of Two-Layered Nanofibrous Membrane for Guided Bone and Tissue Regeneration Application. Materials Science and Engineering: C, 80, 75-87.
https://doi.org/10.1016/j.msec.2017.05.125
[33]  Zhang, S., Huang, L., Bian, M., Xiao, L., Zhou, D., Tao, Z., et al. (2024) Multifunctional Bone Regeneration Membrane with Flexibility, Electrical Stimulation Activity and Osteoinductive Activity. Small, 20, Article 2405311.
https://doi.org/10.1002/smll.202405311
[34]  Ku, Y., Shim, I.K., Lee, J.Y., Park, Y.J., Rhee, S., Nam, S.H., et al. (2008) Chitosan/Poly(l-Lactic Acid) Multilayered Membrane for Guided Tissue Regeneration. Journal of Biomedical Materials Research Part A, 90, 766-772.
https://doi.org/10.1002/jbm.a.31846

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133