全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Fluent的博士帽型弯管冲蚀模拟分析
Erosion Simulation Analysis of Doctoral Cap Pipeline Elbow Based on Fluent

DOI: 10.12677/sea.2025.141011, PP. 108-117

Keywords: Fluent,弯管,流体仿真,冲蚀
Fluent
, Elbow, Fluid Simulation, Erosion

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究博士帽型弯管的流动特性与冲蚀问题,基于Fluent软件描述和模拟实际物理现象的数学和计算框架,选用RNG k-ε模型、DPM离散相模型以及冲蚀速率公式,模拟研究了普通弯管与博士帽型弯管内的冲蚀情况,分析讨论了质量流量、气体流速、固体颗粒直径对弯管冲蚀磨损的规律。结果显示:相同条件下,博士帽型弯管空腔内气体速度和颗粒速度相比普通弯管较小,颗粒撞击弯管外壁的速度降低,因此博士帽型弯管具有优异的抗冲蚀性能;在特定条件下,流体的流速越高,粒子对弯头的磨损越显著,流速与冲蚀率呈正相关;在同一流速条件下,冲蚀率随着颗粒粒径的增大而逐步上升,最终趋于稳定。
In order to study the flow characteristics and erosion problems of doctorial cap pipeline, according to the actual production situation on site, the corresponding physical model was established based on Ansys-Fluent fluid simulation software, and the RNG k-epsilon model, DPM discrete phase model and erosion rate equation were selected to simulate and study the erosion of ordinary pipe and doctorial cap pipe. The laws of mass flow rate, gas flow rate and solid particle diameter on erosion wear of pipe were analyzed and discussed. The findings indicate that, under identical conditions, the gas velocity and particle velocity in the cavity of the Bosch cap bend are smaller than that of the ordinary bend, and the velocity of the particles impacting the shell of the bend is reduced, so the Bosch cap bend has a good anti-erosion effect. Under certain conditions, the faster the fluid velocity is, the more obvious the erosion of particles on the bend, and the flow velocity is positively correlated with the erosion rate. At the same flow rate, the erosion rate increases gradually with the increase of particle size, and finally tends to be stable. The simulation results show that the doctorial cap pipe has strong erosion resistance, and the mass flow rate, gas flow rate and the diameter of solid particles are the main factors affecting the erosion rate of pipeline elbow.

References

[1]  董争亮, 阮超, 白立强, 等. 90°弯管冲蚀磨损仿真分析[J]. 组合机床与自动化加工技术, 2021(9): 157-161.
[2]  Tripathi, N.M., Santo, N., Levy, A. and Kalman, H. (2019) Experimental Analysis of Velocity Reduction in Bends Related to Vertical Pipes in Dilute Phase Pneumatic Conveying. Powder Technology, 345, 190-202.
https://doi.org/10.1016/j.powtec.2019.01.001
[3]  Safaei, M.R., Mahian, O., Garoosi, F., Hooman, K., Karimipour, A., Kazi, S.N., et al. (2014) Investigation of Micro-and Nanosized Particle Erosion in a 90° Pipe Bend Using a Two-Phase Discrete Phase Model. The Scientific World Journal, 2014, Article ID: 740578.
https://doi.org/10.1155/2014/740578
[4]  Pouraria, H., Seo, J.K. and Paik, J.K. (2016) Numerical Study of Erosion in Critical Components of Subsea Pipeline: Tees vs Bends. Ships and Offshore Structures, 12, 233-243.
https://doi.org/10.1080/17445302.2015.1131889
[5]  卢静, 包文琦, 赵军, 等. 一种通风管道耐磨弯头[P]. 中国专利, CN201220083431.5. 2012-11-07.
[6]  游赟, 李梦莹. 基于FLUENT天然气集输管道直角弯管磨损分析[J]. 煤气与热力, 2021, 41(4): 75-81, 102.
[7]  胡金文, 马贵阳, 王红莹, 等. 高含硫天然气管道泄漏扩散数值模拟[J]. 节能技术, 2011, 29(5): 418-423.
[8]  Liu, M.Y. (2017) A Modified CFD-Based Sand Erosion Prediction Procedure for Pipe Elbows and Similarity Analyses on Erosion Tests. Doctor’s Thesis, Tianjin University.
https://kns.cnki.net/kcms2/article/abstract?v=YHRUfPYi6NO-wqos9T9_K1KthcxmPuLGadme6lvgkmr7NJIAybriuXUANvu7bbed8W9F7FRoERV4vdfWino1EeUFG5l-A1wp3amiQi5b2UAK_UVEgmQi8qoGWnMxxUn4ZMtkmBFhHZaGQ-DiNc67KXI5mNxW_QkupL8fhZvYEa23Ina-i36gA81E4eM3ekiiYTr7rZcL4AU=&uniplatform=NZKPT&language=CHS
[9]  王明吉, 姚岱男, 张勇, 等. 基于Fluent的油气管道内部泄漏特性分析[J]. 化工自动化及仪表, 2020, 47(5): 420-424.
[10]  Sun, X. and Cao, X. (2021) Impact of Inter-Particle Collision on Elbow Erosion Based on DSMC-CFD Method. Petroleum Science, 18, 909-922.
https://doi.org/10.1007/s12182-021-00550-5
[11]  Wei, Z., Huang, X., Lu, L., Shangguan, H., Chen, Z., Zhan, J., et al. (2019) Strategy of Rainwater Discharge in Combined Sewage Intercepting Manhole Based on Water Quality Control. Water, 11, Article 898.
https://doi.org/10.3390/w11050898
[12]  王岩. 液体颗粒对天然气管道冲蚀的数值模拟[D]: [硕士学位论文]. 抚顺: 辽宁石油化工大学, 2019.
[13]  夏明磊, 罗懿. 基于FLUENT的混输海管沉积物腐蚀模拟分析[J]. 广东化工, 2022, 49(10): 185-188, 201.
[14]  朱秀萍, 李勇. 气力输送中弯管磨损原因分析及预防措施[J]. 橡胶工业, 2008(11): 680-684.
[15]  史晶莹, 陈燕才, 蔡晓明, 等. 天然气携砂在90°弯管中的冲蚀磨损数值分析 [J]. 油气田地面工程, 2021, 40(5): 6-11.
[16]  冯晓峰, 张华, 谢冬明, 等. 烧结除尘系统90°弯管壁面冲蚀磨损规律 [J]. 烧结球团, 2024, 49(2): 17-24, 37.
[17]  Forder, A., Thew, M. and Harrison, D. (1998) A Numerical Investigation of Solid Particle Erosion Experienced within Oilfield Control Valves. Wear, 216, 184-193.
https://doi.org/10.1016/s0043-1648(97)00217-2
[18]  Haugen, K., Kvernvold, O., Ronold, A. and Sandberg, R. (1995) Sand Erosion of Wear-Resistant Materials: Erosion in Choke Valves. Wear, 186, 179-188.
https://doi.org/10.1016/0043-1648(95)07158-x
[19]  Heitz, E. (1996) Mechanistically Based Prevention Strategies of Flow-Induced Corrosion. Electrochimica Acta, 41, 503-509.
https://doi.org/10.1016/0013-4686(95)00336-3
[20]  叶健. 煤液化管道材料冲蚀磨损试验与数值研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2013.
[21]  ANSYS Inc. (2012) ANSYS Fluent 14. 5 Theory Guide.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133