|
高温环境下储能电池模组浸没式散热研究
|
Abstract:
针对储能电池在高温环境下放电的散热问题威胁其安全高效运行。本研究以某电池模组为对象,设计了一种带有缓冲积液腔及梯形分流口的新型散热系统,经数值量化分析,探究不同浸没液、放电倍率及入口流量在高温环境下对其散热性能影响。结果表明合成油散热综合性能佳,且1C放电倍率和入口流量为1.5 L/min时综合效果最优,此时模组在压降ΔP,最大温差ΔTmax及结束温度Tend分别为1.07 kPa,0.95℃,34.77℃。本研究为优化电池模组散热、提升储能系统性能和安全性提供依据。
The problem of heat dissipation during discharge of energy storage batteries in high temperature environments poses a threat to their safe and efficient operation. This study focuses on a certain battery module and designs a new type of heat dissipation system with a buffer fluid chamber and a trapezoidal diversion port. Through numerical quantification analysis, the study explores the effects of different immersion liquids, discharge rates, and inlet flow rates on their heat dissipation performance in high temperature environments. The results showed that the comprehensive heat dissipation performance of synthetic oil was excellent, and the optimal comprehensive effect was achieved when the 1C discharge rate and inlet flow rate was 1.5 L/min. At this time, the module had a pressure drop ΔP, maximum temperature difference ΔTmax, and end temperature Tend of 1.07 kPa, 0.95?C, and 34.77?C, respectively. This study provides a basis for optimizing the heat dissipation of battery modules, improving the performance and safety of energy storage systems.
[1] | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-8. |
[2] | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
[3] | 曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. |
[4] | 张进强, 王海民, 鲁男. 绝缘油浸没式冷却小型NCM811动力电池模组的温度场特性实验[J]. 储能科学与技术, 2022, 11(9): 2612-2619. |
[5] | Wang, Y., Rao, Z., Liu, S., Li, X., Li, H. and Xiong, R. (2021) Evaluating the Performance of Liquid Immersing Preheating System for Lithium-Ion Battery Pack. Applied Thermal Engineering, 190, Article 116811. https://doi.org/10.1016/j.applthermaleng.2021.116811 |
[6] | 卢乙彬, 邵双全, 蔡贵立. 基于浸没式液冷技术的储能电池仿真与理论研究[J]. 电信工程技术与标准化, 2023, 36(z1): 134-138. |
[7] | Zhu, H., Ma, Y., E, J. and Wei, S. (2024) Channel Structure Design and Optimization for Immersion Cooling System of Lithium-Ion Batteries. Journal of Energy Storage, 77, Article 109930. https://doi.org/10.1016/j.est.2023.109930 |
[8] | 陈岳浩, 陈莎, 陈慧兰, 等. 储能电池组浸没式液冷系统冷却性能模拟研究[J/OL]. 储能科学与技术, 1-12. https://doi.org/10.19799/j.cnki.2095-4239.2024.0751, 2024-12-11 |
[9] | Sheng, L., Zhang, Z., Su, L., Zhang, H., Zhang, H., Li, K., et al. (2021) A Calibration Calorimetry Method to Investigate the Thermal Characteristics of a Cylindrical Lithium-Ion Battery. International Journal of Thermal Sciences, 165, Article 106891. https://doi.org/10.1016/j.ijthermalsci.2021.106891 |
[10] | 付林祥, 张振东, 盛雷, 等. 大尺寸锂离子电池液冷系统散热性能研究[J]. 低温与超导, 2022, 50(8): 69-76. |
[11] | 王紫啸, 张振东, 盛雷. 锂离子电池浸没式热管理性能仿真研究[J]. 低温与超导, 2023, 51(12): 64-72. |