|
基于HO-VMD优化的TCN轴承故障特征诊断模型
|
Abstract:
现代工业中的大中小型机械设备基本都含有旋转机械,其中轴承连接是一种非常常见的连接方式。但目前针对轴承故障的诊断方式有限,诊断的模型类别较为传统,为此特地提出一种基于HO-VMD优化的TCN轴承故障特征诊断模型,在传统频谱分析以及模态分解方法下无法正确有效的识别轴承故障的背景下,本文利用优化算法领域中较为新锐的HO优化算法(河马优化算法)解决了传统VMD分解(变分模态分解)难以确定模态分解个数与惩罚因子参数的问题,提高了故障特征的提取效率与正确率,此外通过现阶段较为新颖前沿的TCN神经网络模型算法对轴承故障类别进行识别,极大地提高了轴承故障诊断的识别效率与准确率,经过对凯斯西储大学开源轴承故障实验数据的特征提取与故障类型识别,结果表明,基于HO-VMD优化的TCN轴承故障特征诊断模型对于轴承故障诊断有着预测精度高,泛化性能高,稳定性好的特点,为轴承故障诊断提供了一种高效、精准、可靠的方法。
Modern industrial machinery of various sizes typically contains rotating components, with bearings being one of the most common connection methods. However, current bearing fault diagnosis approaches remain limited and rely mainly on traditional model types. In light of the shortcomings of conventional spectrum analysis and modal decomposition methods—which often fail to accurately detect bearing faults-this paper proposes a TCN-based bearing fault feature diagnosis model optimized by HO-VMD. Specifically, we leverage the novel HO (Hippopotamus Optimization) algorithm to tackle the challenge of determining the number of decomposed modes and penalty factors in traditional VMD (Variational Mode Decomposition), thereby improving both the efficiency and accuracy of fault feature extraction. Furthermore, by utilizing the cutting-edge TCN (Temporal Convolutional Network) to classify bearing fault types, the method significantly enhances fault diagnosis accuracy and efficiency. Experimental results on Case Western Reserve University’s open-source bearing fault dataset demonstrate that the HO-VMD-optimized TCN model achieves high prediction accuracy, strong generalization performance, and excellent stability, providing an efficient, precise, and reliable solution for bearing fault diagnosis.
[1] | 苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21. |
[2] | 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6): 748-758. |
[3] | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16. |
[4] | 张伟. 基于卷积神经网络的轴承故障诊断算法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017. |
[5] | 钱林, 康敏, 傅秀清, 等. 基于VMD的自适应形态学在轴承故障诊断中的应用[J]. 振动与冲击, 2017, 36(3): 227-233. |
[6] | Lei, Y., He, Z. and Zi, Y. (2011) EEMD Method and WNN for Fault Diagnosis of Locomotive Roller Bearings. Expert Systems with Applications, 38, 7334-7341. https://doi.org/10.1016/j.eswa.2010.12.095 |
[7] | 胡爱军, 孙敬敬, 向玲. 经验模态分解中的模态混叠问题[J]. 振动. 测试与诊断, 2011, 31(4): 429-434, 532-533. |
[8] | 杨宇, 于德介, 程军圣. 基于EMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2005, 24(1): 85-88. |
[9] | Amiri, M.H., Mehrabi Hashjin, N., Montazeri, M., Mirjalili, S. and Khodadadi, N. (2024) Hippopotamus Optimization Algorithm: A Novel Nature-Inspired Optimization Algorithm. Scientific Reports, 14, Article No. 5032. https://doi.org/10.1038/s41598-024-54910-3 |
[10] | 杨驰泽, 吴韡, 王祥, 等. 基于改进河马优化算法的含分布式电源配电网重构[J]. 电工电气, 2024(10): 1-7. |
[11] | 袁磊. 融合多策略的改进河马优化算法及其应用[J/OL]. 海南大学学报(自然科学版), 1-8. https://doi.org/10.15886/j.cnki.hdxbzkb.2024031802, 2024-12-24. |
[12] | 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358. |
[13] | 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56. |
[14] | 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18. |
[15] | 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248. |
[16] | Hewage, P., Behera, A., Trovati, M., Pereira, E., Ghahremani, M., Palmieri, F., et al. (2020) Temporal Convolutional Neural (TCN) Network for an Effective Weather Forecasting Using Time-Series Data from the Local Weather Station. Soft Computing, 24, 16453-16482. https://doi.org/10.1007/s00500-020-04954-0 |
[17] | 郭玲, 徐青山, 郑乐. 基于TCN-GRU模型的短期负荷预测方法[J]. 电力工程技术, 2021, 40(3): 66-71. |
[18] | 胡爱军, 马万里, 唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报, 2012, 32(11): 106-111, 153. |