|
石墨烯的机械剥离
|
Abstract:
大规模的石墨烯生产具有很高的商业价值,广泛应用于各个领域。将石墨剥离以得到石墨烯可以以极低的成本实现大规模生产,是当前最有前途的方法之一。本文综述了不同种类的机械剥离,对剥离机制的深入了解可以为实现高质量的石墨烯剥离技术的优化提供有效的指导。我们收集分析了近年来在石墨烯生产的机械剥离方面的最新进展,如已经广泛应用的超声剥离法,球磨剥离法,利用流体动力学实现剥离的方法,以及具有创新性的超临界剥离法。同时我们还展望了如何利用机械剥离技术获取高质量的石墨烯,希望这篇综述可以为石墨烯的生产发展指明一个方向。
Large-scale graphene production holds significant commercial value and is widely used across various fields. The exfoliation of graphite to obtain graphene can achieve large-scale production at a very low cost, making it one of the most promising methods currently available. This article reviews different types of mechanical exfoliation. A deep understanding of the exfoliation mechanisms can provide effective guidance for optimizing high-quality graphene exfoliation technology. We have collected and analyzed the latest advancements in mechanical exfoliation for graphene production in recent years, such as the widely used ultrasonic exfoliation method, ball milling exfoliation, methods utilizing fluid dynamics for exfoliation, and the innovative supercritical exfoliation method. Additionally, we look forward to how mechanical exfoliation technology can be utilized to obtain high-quality graphene. We hope this review can provide a direction for the development of graphene production.
[1] | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., et al. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200. https://doi.org/10.1038/nature04233 |
[2] | Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K. (2012) A Roadmap for Graphene. Nature, 490, 192-200. https://doi.org/10.1038/nature11458 |
[3] | Zhao, X., E, J., Wu, G., Deng, Y., Han, D., Zhang, B., et al. (2019) A Review of Studies Using Graphenes in Energy Conversion, Energy Storage and Heat Transfer Development. Energy Conversion and Management, 184, 581-599. https://doi.org/10.1016/j.enconman.2019.01.092 |
[4] | Zhang, T., Wu, S., Yang, R. and Zhang, G. (2017) Graphene: Nanostructure Engineering and Applications. Frontiers of Physics, 12, Article No. 127206. https://doi.org/10.1007/s11467-017-0648-z |
[5] | Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., et al. (2019) Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9, Article 422. https://doi.org/10.3390/nano9030422 |
[6] | Rohaizad, N., Mayorga-Martinez, C.C., Fojtů, M., Latiff, N.M. and Pumera, M. (2021) Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chemical Society Reviews, 50, 619-657. https://doi.org/10.1039/d0cs00150c |
[7] | Nie, Q., Wei, X., Qin, X., Huang, Y., Chen, G., Yang, L., et al. (2020) Microstructure and Properties of Graphite Nanoflakes/cu Matrix Composites Fabricated by Pressureless Sintering and Subsequent Thermo-Mechanical Treatment. Diamond and Related Materials, 108, Article ID: 107948. https://doi.org/10.1016/j.diamond.2020.107948 |
[8] | Vo-Van, C., Kimouche, A., Reserbat-Plantey, A., Fruchart, O., Bayle-Guillemaud, P., Bendiab, N., et al. (2011) Epitaxial Graphene Prepared by Chemical Vapor Deposition on Single Crystal Thin Iridium Films on Sapphire. Applied Physics Letters, 98, Article ID: 181903. https://doi.org/10.1063/1.3585126 |
[9] | Zhang, Y., Zhang, L. and Zhou, C. (2013) Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 46, 2329-2339. https://doi.org/10.1021/ar300203n |
[10] | Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., et al. (2008) High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotechnology, 3, 563-568. https://doi.org/10.1038/nnano.2008.215 |
[11] | Yi, M., Shen, Z., Ma, S. and Zhang, X. (2012) A Mixed-Solvent Strategy for Facile and Green Preparation of Graphene by Liquid-Phase Exfoliation of Graphite. Journal of Nanoparticle Research, 14, Article No. 1003. https://doi.org/10.1007/s11051-012-1003-5 |
[12] | Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., et al. (2009) Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 131, 3611-3620. https://doi.org/10.1021/ja807449u |
[13] | Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A. and Stubos, A.K. (2009) Liquid‐Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small, 5, 1841-1845. https://doi.org/10.1002/smll.200900242 |
[14] | Zhou, X., Wu, T., Ding, K., Hu, B., Hou, M. and Han, B. (2010) Dispersion of Graphene Sheets in Ionic Liquid [bmim][PF6] Stabilized by an Ionic Liquid Polymer. Chemical Communications, 46, 386-388. https://doi.org/10.1039/b914763b |
[15] | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896 |
[16] | Dresselhaus, M.S. and Araujo, P.T. (2010) Perspectives on the 2010 Nobel Prize in Physics for Graphene. ACS Nano, 4, 6297-6302. https://doi.org/10.1021/nn1029789 |
[17] | Lin, L., Zheng, X., Zhang, S. and Allwood, D.A. (2014) Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide. Advanced Materials Interfaces, 1, Article ID: 1300078. https://doi.org/10.1002/admi.201300078 |
[18] | Antisari, M., Montone, A., Jovic, N., Piscopiello, E., Alvani, C. and Pilloni, L. (2006) Low Energy Pure Shear Milling: A Method for the Preparation of Graphite Nano-Sheets. Scripta Materialia, 55, 1047-1050. https://doi.org/10.1016/j.scriptamat.2006.08.002 |
[19] | Knieke, C., Berger, A., Voigt, M., Taylor, R.N.K., Röhrl, J. and Peukert, W. (2010) Scalable Production of Graphene Sheets by Mechanical Delamination. Carbon, 48, 3196-3204. https://doi.org/10.1016/j.carbon.2010.05.003 |
[20] | Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L. and Chen, G. (2010) Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling. Journal of Materials Chemistry, 20, 5817-5819. https://doi.org/10.1039/c0jm01354d |
[21] | Jeon, I., Shin, Y., Sohn, G., Choi, H., Bae, S., Mahmood, J., et al. (2012) Edge-Carboxylated Graphene Nanosheets via Ball Milling. Proceedings of the National Academy of Sciences of the United States of America, 109, 5588-5593. https://doi.org/10.1073/pnas.1116897109 |
[22] | Del Rio-Castillo, A.E., Merino, C., Díez-Barra, E. and Vázquez, E. (2014) Selective Suspension of Single Layer Graphene Mechanochemically Exfoliated from Carbon Nanofibres. Nano Research, 7, 963-972. https://doi.org/10.1007/s12274-014-0457-4 |
[23] | Damm, C., Nacken, T.J. and Peukert, W. (2015) Quantitative Evaluation of Delamination of Graphite by Wet Media Milling. Carbon, 81, 284-294. https://doi.org/10.1016/j.carbon.2014.09.059 |
[24] | Aparna, R., Sivakumar, N., Balakrishnan, A., Sreekumar Nair, A., Nair, S.V. and Subramanian, K.R.V. (2013) An Effective Route to Produce Few-Layer Graphene Using Combinatorial Ball Milling and Strong Aqueous Exfoliants. Journal of Renewable and Sustainable Energy, 5, Article ID: 033123. https://doi.org/10.1063/1.4809794 |
[25] | Chen, X., Dobson, J.F. and Raston, C.L. (2012) Vortex Fluidic Exfoliation of Graphite and Boron Nitride. Chemical Communications, 48, 3703-3705. https://doi.org/10.1039/c2cc17611d |
[26] | Wahid, M.H., Eroglu, E., Chen, X., Smith, S.M. and Raston, C.L. (2013) Functional Multi-Layer Graphene-Algae Hybrid Material Formed Using Vortex Fluidics. Green Chemistry, 15, 650-655. https://doi.org/10.1039/c2gc36892g |
[27] | Tian, R., Jia, X., Yang, J., Li, Y. and Song, H. (2020) Large-Scale, Green, and High-Efficiency Exfoliation and Noncovalent Functionalization of Fluorinated Graphene by Ionic Liquid Crystal. Chemical Engineering Journal, 395, Article ID: 125104. https://doi.org/10.1016/j.cej.2020.125104 |
[28] | Ismail, Z., Kassim, N.F.A., Abdullah, A.H., Abidin, A.S.Z., Ismail, F.S. and Yusoh, K. (2017) Black Tea Assisted Exfoliation Using a Kitchen Mixer Allowing One-Step Production of Graphene. Materials Research Express, 4, Article ID: 075607. https://doi.org/10.1088/2053-1591/aa7ae2 |
[29] | Zhao, S., Xie, S., Zhao, Z., Zhang, J., Li, L. and Xin, Z. (2018) Green and High-Efficiency Production of Graphene by Tannic Acid-Assisted Exfoliation of Graphite in Water. ACS Sustainable Chemistry & Engineering, 6, 7652-7661. https://doi.org/10.1021/acssuschemeng.8b00497 |
[30] | Lozano-Chico, M., Fernández-d’Arlas, B., Matias-Alkaiaga, M., Eceiza, A., Iturrondobeitia, M. and Ugarte, L. (2024) Water-based and Tannin-Assisted Liquid-Phase Exfoliation for a Sustainable Production of Graphene. Sustainable Materials and Technologies, 40, e00956. https://doi.org/10.1016/j.susmat.2024.e00956 |
[31] | Sun, G., Li, X., Qu, Y., Wang, X., Yan, H. and Zhang, Y. (2008) Preparation and Characterization of Graphite Nanosheets from Detonation Technique. Materials Letters, 62, 703-706. https://doi.org/10.1016/j.matlet.2007.06.035 |
[32] | Pu, N., Wang, C., Sung, Y., Liu, Y. and Ger, M. (2009) Production of Few-Layer Graphene by Supercritical CO2 Exfoliation of Graphite. Materials Letters, 63, 1987-1989. https://doi.org/10.1016/j.matlet.2009.06.031 |
[33] | Rangappa, D., Sone, K., Wang, M., Gautam, U.K., Golberg, D., Itoh, H., et al. (2010) Rapid and Direct Conversion of Graphite Crystals into High‐Yielding, Good‐Quality Graphene by Supercritical Fluid Exfoliation. Chemistry—A European Journal, 16, 6488-6494. https://doi.org/10.1002/chem.201000199 |
[34] | Zheng, X., Xu, Q., Li, J., Li, L. and Wei, J. (2012) High-throughput, Direct Exfoliation of Graphite to Graphene via a Cooperation of Supercritical CO2 and Pyrene-Polymers. RSC Advances, 2, 10632-10638. https://doi.org/10.1039/c2ra21316h |
[35] | Li, L., Zheng, X., Wang, J., Sun, Q. and Xu, Q. (2012) Solvent-Exfoliated and Functionalized Graphene with Assistance of Supercritical Carbon Dioxide. ACS Sustainable Chemistry & Engineering, 1, 144-151. https://doi.org/10.1021/sc3000724 |
[36] | Gao, Y., Shi, W., Wang, W., Wang, Y., Zhao, Y., Lei, Z., et al. (2014) Ultrasonic-assisted Production of Graphene with High Yield in Supercritical CO2 and Its High Electrical Conductivity Film. Industrial & Engineering Chemistry Research, 53, 2839-2845. https://doi.org/10.1021/ie402889s |