全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

筒仓内壁静态与动态法向应力的测量与分析
Measurement and Analysis of Static and Dynamic Normal Pressure on Silo Walls

DOI: 10.12677/japc.2025.141005, PP. 48-58

Keywords: 筒仓颗粒流,静态应力,动态应力,超压系数
Silo Particle Flow
, Static Pressure, Dynamic Pressure, Overpressure Coefficient

Full-Text   Cite this paper   Add to My Lib

Abstract:

精准测量满载和卸料时颗粒物质对筒仓内壁的法向应力,掌握应力随时间和高度的变化规律,与筒仓的安全运行密切相关。本文设计了一种基于全桥电路的电阻应变式传感器,通过搭建筒仓应力测量系统,采用均值粒径为1.29 mm的透明玻璃珠进行实验,测量筒仓静态堆积和卸料过程中的壁面法向应力。静态应力的测量结果表明,颗粒填充完成后,在圆柱形部分出现了静态应力随着高度的降低而减小的区域,这与Janssen模型不一致。然后我们分析了每一个检测点在卸料过程中动态应力最大值的时空分布,结果表明,动态应力最大值出现在圆柱形中下部分,而不是筒仓几何转变处。最后我们计算了最大动态应力与静态应力的比值,得到了每个检测点的超压系数,发现超压系数最大值出现在H = 215 mm处。该研究对筒仓结构设计具有重要意义,有助于对应力增幅显著的区域进行结构优化,为提高筒仓的安全性和耐久性提供了关键参考。
Accurately measuring the normal pressure exerted by granular materials on the inner walls of silos during loading and unloading, and understanding the variation of pressure over time and height, is closely related to the safe operation of silos. This study designed a resistive strain gauge sensor based on a full-bridge circuit and constructed a silo pressure measurement system. Experiments were conducted using transparent glass beads with an average particle size of 1.29 mm to measure the normal pressure on the silo walls during static filling and unloading processes. The results of static pressure measurements showed that, after filling, a region in the cylindrical section exhibited a decrease in static pressure with decreasing height, which is inconsistent with the predictions of the Janssen model. Subsequently, we analyzed the spatiotemporal distribution of the maximum dynamic pressure at each measurement point during unloading. The results showed that the maximum dynamic pressure occurred in the lower-middle part of the cylindrical section rather than at the geometric transition of the silo. Finally, we calculated the ratio of the maximum dynamic pressure to the static pressure at each measurement point to obtain the overpressure coefficient, and found that the maximum overpressure coefficient appeared at H = 215 mm. This study is of great significance to the structural design of silos, as it helps optimize the structure in regions with significant pressure amplification during unloading, providing key references for improving the safety and durability of silo operations.

References

[1]  杜明芳, 张昭, 周健. 筒仓压力及其流态的颗粒流数值模拟[J]. 特种结构, 2004, 21(4): 39-41.
[2]  苏乐逍. 立筒仓卸料时仓壁超压的力学分析[J]. 郑州粮食学院学报, 1998, 19(4): 15-19.
[3]  苏乐逍, 赵霖, 刘建秀. 粮食立筒仓弹性变形对卸料动压力的影响与计算[J]. 工程力学, 1999(6): 102-106+118.
[4]  Khalil, M., Ruggieri, S. and Uva, G. (2022) Assessment of Structural Behavior, Vulnerability, and Risk of Industrial Silos: State-of-the-Art and Recent Research Trends. Applied Sciences, 12, Article No. 3006.
https://doi.org/10.3390/app12063006
[5]  Janssen, H.A. (1895) Experiments about Pressures of Grain in Silos. Z. des Vereines DeutscherIngenieure, 39, 1045-1049.
[6]  祝振兴, 朱建平, 曹勇, 等. 中欧钢筋混凝土筒仓设计规范比较[J]. 水泥工程, 2013(3): 14-16+26.
[7]  段君峰, 韩阳, 李东桥, 等. 中欧美钢筋混凝土筒仓规范对比研究[J]. 河南工业大学学报(自然科学版), 2019, 40(1): 108-112.
[8]  Roberts, A.W. (2023) 100 Years of Janssen. In: ICBMH2023: 14th International Conference on Bulk Materials Storage, Handling and Transportation: 14th International Conference on Bulk Materials Storage, Handling and Transportation, The Institution of Engineers, 6-33.
[9]  Jing, H., Wang, X., Yang, J. and Chen, H. (2022) Static and Seismic Pressure of Cylindrical Steel Silo Model with Granular Materials. Journal of Constructional Steel Research, 198, Article ID: 107515.
https://doi.org/10.1016/j.jcsr.2022.107515
[10]  Saleh, K., Golshan, S. and Zarghami, R. (2018) A Review on Gravity Flow of Free-Flowing Granular Solids in Silos—Basics and Practical Aspects. Chemical Engineering Science, 192, 1011-1035.
https://doi.org/10.1016/j.ces.2018.08.028
[11]  赵松. 筒仓贮料压力分析及其应用[D]: [博士学位论文]. 武汉: 武汉理工大学, 2013.
[12]  Feng, Y. and Liu, J. (2019) Dynamic Simulation Analysis of Elastic Overpressure Fluctuation on Silo Wall for the Arch Action. Journal of Vibroengineering, 21, 1045-1057.
https://doi.org/10.21595/jve.2019.20493
[13]  Gandia, R.M., Gomes, F.C., Paula, W.C.d., Oliveira Junior, E.A.d. and Aguado Rodriguez, P.J. (2021) Static and Dynamic Pressure Measurements of Maize Grain in Silos under Different Conditions. Biosystems Engineering, 209, 180-199.
https://doi.org/10.1016/j.biosystemseng.2021.07.001
[14]  Gandia, R.M., Gomes, F.C., Paula, W.C.D. and Aguado Rodriguez, P.J. (2021) Evaluation of Pressures in Slender Silos Varying Hopper Angle and Silo Slenderness. Powder Technology, 394, 478-495.
https://doi.org/10.1016/j.powtec.2021.08.087
[15]  Couto, A., Ruiz, A. and Aguado, P.J. (2012) Design and Instrumentation of a Mid-Size Test Station for Measuring Static and Dynamic Pressures in Silos under Different Conditions—Part I: Description. Computers and Electronics in Agriculture, 85, 164-173.
https://doi.org/10.1016/j.compag.2012.04.009
[16]  Zhang, D., Xu, Q., Wang, S., et al. (2017) Simulation and Experimental Validation of Silo Wall Pressure during Discharging. Transactions of the Chinese Society of Agricultural Engineering, 33, 272-278.
[17]  Wang, X., Shi, Y., Luo, B., Liang, C., Liu, D., Ma, J., et al. (2022) Flow Profile and Wall Normal Stress Characteristics in Pattern-Transformable Flow Silos. Chemical Engineering Research and Design, 182, 381-394.
https://doi.org/10.1016/j.cherd.2022.04.019
[18]  Sperl, M. (2005) Experiments on Corn Pressure in Silo Cells—Translation and Comment of Janssen’s Paper from 1895. Granular Matter, 8, 59-65.
https://doi.org/10.1007/s10035-005-0224-z
[19]  Walters, J.K. (1973) A Theoretical Analysis of Stresses in Silos with Vertical Walls. Chemical Engineering Science, 28, 13-21.
https://doi.org/10.1016/0009-2509(73)85081-x
[20]  An, H., Wang, X., Fang, X., Liu, Z. and Liang, C. (2021) Wall Normal Stress Characteristics in an Experimental Coal Silo. Powder Technology, 377, 657-665.
https://doi.org/10.1016/j.powtec.2020.09.016
[21]  Gandia, R.M., de Paula, W.C., de Oliveira Junior, E.A., Rodrigo, G.H., Padín, Á.R., Vegas, A.T., et al. (2022) Effect of the Hopper Angle of a Silo on the Vertical Stress at the Cylinder-to-Hopper Transition. Agronomy, 12, Article No. 830.
https://doi.org/10.3390/agronomy12040830
[22]  Shamlou, P.A. (2013) Handling of Bulk Solids: Theory and Practice. Elsevier.
[23]  Schulze, D. (2021) Calculation and Measurement of Stresses in Bins and Silos. In: Schulze, D., Ed., Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, Springer International Publishing, 291-365.
https://doi.org/10.1007/978-3-030-76720-4_9
[24]  Wang, X., Li, B., Xia, R. and Ma, H. (2020) Stress Analysis of Silos Using DEM. In: Wang, X.W., Li, B., Xia, R. and Ma, H.Z., Eds., Engineering Applications of Discrete Element Method: Operation Analysis and Optimization Design of Coal and Agricultural Machinery, Springer, 123-138.
https://doi.org/10.1007/978-981-15-7977-6_7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133