|
刺激响应水凝胶软致动器的研究进展
|
Abstract:
刺激响应水凝胶软致动器作为一种具备自适应变形能力的智能材料,近年来在软体机器人、生物医学、智能控制等领域引起了广泛关注。本文综述了刺激响应水凝胶软致动器的最新研究进展,重点分析了不同外界刺激(包括热、光、电、磁、pH、离子、氧化还原反应、溶剂等)对其性能的影响。同时,总结了水凝胶软致动器在智能夹具、智能开关、智能窗帘、仿生软体机器人及药物输送等应用领域的最新研究进展。最后,本文讨论了提升其性能和拓展应用的潜在途径,并对未来发展前景进行展望。
Stimuli-responsive hydrogel actuators, as intelligent materials with adaptive deformation capabilities, have attracted widespread attention in recent years across various fields, including soft robotics, biomedical applications, and smart control. This review summarizes the latest research advancements in stimuli-responsive hydrogel actuators, with a particular focus on the impact of various external stimuli (such as temperature, light, electric fields, magnetic fields, pH, ions, redox reactions, and solvent) on their performance. Furthermore, the article provides an overview of recent progress in the application of hydrogel actuators in intelligent grippers, smart switches, smart curtains, biomimetic soft robots, and drug delivery systems. Finally, potential strategies for enhancing their performance and expanding their applications are discussed, along with an outlook on future development trends.
[1] | Jin, Z., Yang, L., Shi, S., Wang, T., Duan, G., Liu, X., et al. (2021) Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 31, Article ID: 2103391. https://doi.org/10.1002/adfm.202103391 |
[2] | Shin, M.K., Spinks, G.M., Shin, S.R., Kim, S.I. and Kim, S.J. (2009) Nanocomposite Hydrogel with High Toughness for Bioactuators. Advanced Materials, 21, 1712-1715. https://doi.org/10.1002/adma.200802205 |
[3] | Wei, J., Li, R., Li, L., Wang, W. and Chen, T. (2022) Touch-Responsive Hydrogel for Biomimetic Flytrap-Like Soft Actuator. Nano-Micro Letters, 14, Article No. 182. https://doi.org/10.1007/s40820-022-00931-4 |
[4] | Park, C.S., Kang, Y., Na, H. and Sun, J. (2024) Hydrogels for Bioinspired Soft Robots. Progress in Polymer Science, 150, Article ID: 101791. https://doi.org/10.1016/j.progpolymsci.2024.101791 |
[5] | Dethe, M.R., A, P., Ahmed, H., Agrawal, M., Roy, U. and Alexander, A. (2022) PCL-PEG Copolymer Based Injectable Thermosensitive Hydrogels. Journal of Controlled Release, 343, 217-236. https://doi.org/10.1016/j.jconrel.2022.01.035 |
[6] | Pei, W., Xie, Z., Pei, X. and Wang, J. (2024) Intelligent Solar-Driven “Switch” Photothermal Hydrogel for Clean Water Harvesting. Chemical Engineering Journal, 495, Article ID: 153420. https://doi.org/10.1016/j.cej.2024.153420 |
[7] | Wei, X., Wu, Q., Chen, L., Sun, Y., Chen, L., Zhang, C., et al. (2023) Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations. ACS Applied Materials & Interfaces, 15, 10030-10043. https://doi.org/10.1021/acsami.2c22831 |
[8] | Li, Z., Li, Y., Chen, C. and Cheng, Y. (2021) Magnetic-Responsive Hydrogels: From Strategic Design to Biomedical Applications. Journal of Controlled Release, 335, 541-556. https://doi.org/10.1016/j.jconrel.2021.06.003 |
[9] | Lee, L., Huang, K., Lin, Y., Jeng, U., Wang, C., Tung, S., et al. (2024) A pH‐Sensitive Stretchable Zwitterionic Hydrogel with Bipolar Thermoelectricity. Small, 20, Article ID: 2311811. https://doi.org/10.1002/smll.202311811 |
[10] | Gao, Y., Jia, F. and Gao, G. (2022) Ultra-Thin, Transparent, Anti-Freezing Organohydrogel Film Responded to a Wide Range of Humidity and Temperature. Chemical Engineering Journal, 430, Article ID: 132919. https://doi.org/10.1016/j.cej.2021.132919 |
[11] | Tai, Y., Wei, C. and Ko, F. (2025) Hydrogel-Based Colorimetric Power-Saving Sensors for On-Site Detection of Chloride Ions and Glucose in Sweat. Biosensors and Bioelectronics, 271, Article ID: 117041. https://doi.org/10.1016/j.bios.2024.117041 |
[12] | Wong, W.S.Y., Li, M., Nisbet, D.R., Craig, V.S.J., Wang, Z. and Tricoli, A. (2016) Mimosa Origami: A Nanostructure-Enabled Directional Self-Organization Regime of Materials. Science Advances, 2, e1600417. https://doi.org/10.1126/sciadv.1600417 |
[13] | Zhang, Z., Chen, Z., Wang, Y., Chi, J., Wang, Y. and Zhao, Y. (2019) Bioinspired Bilayer Structural Color Hydrogel Actuator with Multienvironment Responsiveness and Survivability. Small Methods, 3, Article ID: 1900519. https://doi.org/10.1002/smtd.201900519 |
[14] | López‐Díaz, A., Martín‐Pacheco, A., Rodríguez, A.M., Herrero, M.A., Vázquez, A.S. and Vázquez, E. (2020) Concentration Gradient‐Based Soft Robotics: Hydrogels out of Water. Advanced Functional Materials, 30, Article ID: 2004417. https://doi.org/10.1002/adfm.202004417 |
[15] | Tang, Y., Wu, B., Li, J., Lu, C., Wu, J. and Xiong, R. (2024) Biomimetic Structural Hydrogels Reinforced by Gradient Twisted Plywood Architectures. Advanced Materials, 37, Article ID: 2411372. https://doi.org/10.1002/adma.202411372 |
[16] | Ma, Y., Ma, S., Yang, W., Yu, B., Pei, X., Zhou, F., et al. (2018) Sundew‐Inspired Simultaneous Actuation and Adhesion/Friction Control for Reversibly Capturing Objects Underwater. Advanced Materials Technologies, 4, Article ID: 1800467. https://doi.org/10.1002/admt.201800467 |
[17] | Li, J., Zhang, G., Cui, Z., Bao, L., Xia, Z., Liu, Z., et al. (2023) High Performance and Multifunction Moisture‐Driven Yin-Yang-Interface Actuators Derived from Polyacrylamide Hydrogel. Small, 19, Article ID: 2303228. https://doi.org/10.1002/smll.202303228 |
[18] | Liu, X., Zhao, L., Liu, F., Astruc, D. and Gu, H. (2020) Supramolecular Redox-Responsive Ferrocene Hydrogels and Microgels. Coordination Chemistry Reviews, 419, Article ID: 213406. https://doi.org/10.1016/j.ccr.2020.213406 |
[19] | Graham, S., Marina, P.F. and Blencowe, A. (2019) Thermoresponsive Polysaccharides and Their Thermoreversible Physical Hydrogel Networks. Carbohydrate Polymers, 207, 143-159. https://doi.org/10.1016/j.carbpol.2018.11.053 |
[20] | Tang, L., Wang, L., Yang, X., Feng, Y., Li, Y. and Feng, W. (2021) Poly(n-isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Progress in Materials Science, 115, Article ID: 100702. https://doi.org/10.1016/j.pmatsci.2020.100702 |
[21] | He, X., Aizenberg, M., Kuksenok, O., Zarzar, L.D., Shastri, A., Balazs, A.C., et al. (2012) Synthetic Homeostatic Materials with Chemo-Mechano-Chemical Self-Regulation. Nature, 487, 214-218. https://doi.org/10.1038/nature11223 |
[22] | Zhao, C., Ma, Z. and Zhu, X.X. (2019) Rational Design of Thermoresponsive Polymers in Aqueous Solutions: A Thermodynamics Map. Progress in Polymer Science, 90, 269-291. https://doi.org/10.1016/j.progpolymsci.2019.01.001 |
[23] | Hua, L., Xie, M., Jian, Y., Wu, B., Chen, C. and Zhao, C. (2019) Multiple-Responsive and Amphibious Hydrogel Actuator Based on Asymmetric UCST-Type Volume Phase Transition. ACS Applied Materials & Interfaces, 11, 43641-43648. https://doi.org/10.1021/acsami.9b17159 |
[24] | Peng, X. and Wang, H. (2018) Shape Changing Hydrogels and Their Applications as Soft Actuators. Journal of Polymer Science Part B: Polymer Physics, 56, 1314-1324. https://doi.org/10.1002/polb.24724 |
[25] | Li, C., Iscen, A., Palmer, L.C., Schatz, G.C. and Stupp, S.I. (2020) Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 142, 8447-8453. https://doi.org/10.1021/jacs.0c02201 |
[26] | Li, M., Zhu, F., Ge, Y., Zhou, J., Chen, X., Chen, W., et al. (2023) Vulcanized Layered Double Hydroxide Nanosheet Composite Hydrogels as Efficient Near-Infrared Light-Fueled Soft Actuators. ACS Materials Letters, 5, 1841-1850. https://doi.org/10.1021/acsmaterialslett.3c00435 |
[27] | Shankar, A., Safronov, A.P., Mikhnevich, E.A. and Beketov, I.V. (2017) Multidomain Iron Nanoparticles for the Preparation of Polyacrylamide Ferrogels. Journal of Magnetism and Magnetic Materials, 431, 134-137. https://doi.org/10.1016/j.jmmm.2016.08.075 |
[28] | Wang, H., Zhu, Z., Jin, H., Wei, R., Bi, L. and Zhang, W. (2022) Magnetic Soft Robots: Design, Actuation, and Function. Journal of Alloys and Compounds, 922, Article ID: 166219. https://doi.org/10.1016/j.jallcom.2022.166219 |
[29] | Li, H., Go, G., Ko, S.Y., Park, J. and Park, S. (2016) Magnetic Actuated pH-Responsive Hydrogel-Based Soft Micro-Robot for Targeted Drug Delivery. Smart Materials and Structures, 25, Article ID: 027001. https://doi.org/10.1088/0964-1726/25/2/027001 |
[30] | Messing, R. and Schmidt, A.M. (2011) Perspectives for the Mechanical Manipulation of Hybrid Hydrogels. Polym. Chem., 2, 18-32. https://doi.org/10.1039/c0py00129e |
[31] | Kang, Y., Woo, J., Lee, H. and Sun, J. (2019) A Mechanically Enhanced Electroactive Hydrogel for 3D Printing Using a Multileg Long Chain Crosslinker. Smart Materials and Structures, 28, Article ID: 095016. https://doi.org/10.1088/1361-665x/ab325d |
[32] | Albright, V., Zhuk, I., Wang, Y., Selin, V., van de Belt-Gritter, B., Busscher, H.J., et al. (2017) Self-Defensive Antibiotic-Loaded Layer-by-Layer Coatings: Imaging of Localized Bacterial Acidification and Ph-Triggering of Antibiotic Release. Acta Biomaterialia, 61, 66-74. https://doi.org/10.1016/j.actbio.2017.08.012 |
[33] | Yang, C., Su, F., Xu, Y., Ma, Y., Tang, L., Zhou, N., et al. (2022) pH Oscillator-Driven Jellyfish-Like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change. ACS Macro Letters, 11, 347-353. https://doi.org/10.1021/acsmacrolett.2c00002 |
[34] | Xu, Y., Bolisetty, S., Drechsler, M., Fang, B., Yuan, J., Ballauff, M., et al. (2008) pH and Salt Responsive Poly(n, n-Dimethylaminoethyl Methacrylate) Cylindrical Brushes and Their Quaternized Derivatives. Polymer, 49, 3957-3964. https://doi.org/10.1016/j.polymer.2008.06.051 |
[35] | Le, X., Lu, W., He, J., Serpe, M.J., Zhang, J. and Chen, T. (2018) Ionoprinting Controlled Information Storage of Fluorescent Hydrogel for Hierarchical and Multi-Dimensional Decryption. Science China Materials, 62, 831-839. https://doi.org/10.1007/s40843-018-9372-2 |
[36] | Nakahata, M., Takashima, Y., Hashidzume, A. and Harada, A. (2013) Redox-Generated Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host-Guest Interactions. Angewandte Chemie International Edition, 52, 5731-5735. https://doi.org/10.1002/anie.201300862 |
[37] | Wu, S., Shi, H., Lu, W., Wei, S., Shang, H., Liu, H., et al. (2021) Aggregation‐Induced Emissive Carbon Dots Gels for Octopus‐Inspired Shape/Color Synergistically Adjustable Actuators. Angewandte Chemie International Edition, 60, 21890-21898. https://doi.org/10.1002/anie.202107281 |
[38] | Liu, W., Geng, L., Wu, J., Huang, A. and Peng, X. (2022) Highly Strong and Sensitive Bilayer Hydrogel Actuators Enhanced by Cross-Oriented Nanocellulose Networks. Composites Science and Technology, 225, Article ID: 109494. https://doi.org/10.1016/j.compscitech.2022.109494 |
[39] | Zhai, Y., Gong, C., Chen, J. and Chang, C. (2023) Magnetic-Field Induced Asymmetric Hydrogel Fibers for Tough Actuators with Programmable Deformation. Chemical Engineering Journal, 477, Article ID: 147088. https://doi.org/10.1016/j.cej.2023.147088 |
[40] | Wei, T., Zhao, R., Fang, L., Li, Z., Yang, M., Zhan, Z., et al. (2023) Encoded Magnetization for Programmable Soft Miniature Machines by Covalent Assembly of Modularly Coupled Microgels. Advanced Functional Materials, 34, Article ID: 2311908. https://doi.org/10.1002/adfm.202311908 |
[41] | Ilami, M., Bagheri, H., Ahmed, R., Skowronek, E.O. and Marvi, H. (2020) Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 33, Article ID: 2003139. https://doi.org/10.1002/adma.202003139 |
[42] | Sun, L., Zhao, Q., Che, L., Li, M., Leng, X., Long, Y., et al. (2023) Multi‐Stimuli‐Responsive Weldable Bilayer Actuator with Programmable Patterns and 3D Shapes. Advanced Functional Materials, 34, Article ID: 2311398. https://doi.org/10.1002/adfm.202311398 |
[43] | Zhao, Q., Chang, Y., Yu, Z., Liang, Y., Ren, L. and Ren, L. (2020) Bionic Intelligent Soft Actuators: High-Strength Gradient Intelligent Hydrogels with Diverse Controllable Deformations and Movements. Journal of Materials Chemistry B, 8, 9362-9373. https://doi.org/10.1039/d0tb01927e |
[44] | Zhang, L., Yan, H., Zhou, J., Zhao, Z., Huang, J., Chen, L., et al. (2023) High‐Performance Organohydrogel Artificial Muscle with Compartmentalized Anisotropic Actuation under Microdomain Confinement. Advanced Materials, 35, Article ID: 2202193. https://doi.org/10.1002/adma.202202193 |