|
鲁西北平原典型农业县土壤质量评价分析
|
Abstract:
土壤养分和重金属是影响耕地质量的重要因素,探究宁津县土壤质量空间分布特征及其影响因子,为高质量农田建设提供理论依据。以2020年宁津县耕地208个样地土壤养分和重金属为研究对象,采用模糊数学法对土壤养分进行肥力评价、内梅罗指数法对土壤重金属进行污染风险评价,结合Topsis法对土壤质量进行评价。结果表明,土壤pH值的均值为8.28,整体呈碱性;有机质、全氮的平均含量分别为17.37 g?kg?1、1.03 g?kg?1,相对缺乏;有效磷、速效钾、缓效钾的平均值含量分别为51.76 mg?kg?1、158.83 mg?kg?1、808.71 mg?kg?1,相对丰富;土壤综合肥力指数的平均值为0.48,整体属于较低水平。土壤重金属铬、镉、铅、砷、汞的平均浓度分别为63.54 mg?kg?1、0.21 mg?kg?1、22.97 mg?kg?1、13.40 mg?kg?1、0.05 mg?kg?1,均低于标准值。土壤质量的空间分布结果表明:县城周边区域土壤质量偏低,土壤质量整体处于中等水平。通过阐述宁津县土壤质量的空间分布特征,掌握土壤质量现状,并根据其现状提出改善的合理性建议,进行土壤资源的精确管理。
Soil nutrients and heavy metals are important factors affecting the quality of arable land. Exploring the spatial distribution characteristics and influencing factors of soil quality in Ningjin County provides a theoretical basis for the construction of high-quality farmland. Taking the soil nutrients and heavy metals of 208 cultivated land plots in Ningjin County in 2020 as research objects, the fuzzy mathematics method was used to evaluate the fertility of soil nutrients, the Nemerow index method was used to evaluate the pollution risk of soil heavy metals, and the Topsis method was combined to evaluate the soil quality. The results showed that the average pH value of the soil was 8.28, indicating an overall alkaline state; The average contents of organic matter and total nitrogen are 17.37 g?kg?1 and 1.03 g?kg?1, respectively, indicating a relative deficiency; The average contents of available phosphorus, available potassium, and slow-release potassium are 51.76 mg?kg?1, 158.83 mg?kg?1, and 808.71 mg?kg?1, respectively, which are relatively abundant; The average value of the comprehensive soil fertility index is 0.48, which is generally at a relatively low level. The average concentrations of heavy metals chromium, cadmium, lead, arsenic, and mercury in the soil were 63.54 mg?kg?1, 0.21 mg?kg?1, 22.97 mg?kg?1, 13.40 mg?kg?1, and 0.05 mg?kg?1, respectively, all of which were lower than the standard values. The spatial distribution of soil quality shows that the soil quality
[1] | Ayoubi, S., Mehnatkesh, A., Jalalian, A., Sahrawat, K.L. and Gheysari, M. (2013) Relationships between Grain Protein, Zn, Cu, Fe and Mn Contents in Wheat and Soil and Topographic Attributes. Archives of Agronomy and Soil Science, 60, 625-638. https://doi.org/10.1080/03650340.2013.825899 |
[2] | Moore, I.D., Gessler, P.E., Nielsen, G.A. and Peterson, G.A. (1993) Soil Attribute Prediction Using Terrain Analysis. Soil Science Society of America Journal, 57, 443-452. https://doi.org/10.2136/sssaj1993.03615995005700020026x |
[3] | 郑琦, 王海江, 吕新, 等. 新疆棉田土壤质量综合评价方法[J]. 应用生态学报, 2018, 29(4): 1291-1301. |
[4] | 张兆永, 吉力力∙阿不都外力, 姜逢清, 等. 艾比湖流域农田土壤重金属的环境风险及化学形态研究[J]. 地理科学, 2015, 35(9): 1198-1206. |
[5] | Mamuye, M., Nebiyu, A., Elias, E. and Berecha, G. (2021) Combined Use of Organic and Inorganic Nutrient Sources Improved Maize Productivity and Soil Fertility in Southwestern Ethiopia. International Journal of Plant Production, 15, 407-418. https://doi.org/10.1007/s42106-021-00144-6 |
[6] | 王钰莹, 孙娇, 刘政鸿, 等. 陕南秦巴山区厚朴群落土壤肥力评价[J]. 生态学报, 2016, 36(16): 5133-5141. |
[7] | Chen, S., Lin, B., Li, Y. and Zhou, S. (2020) Spatial and Temporal Changes of Soil Properties and Soil Fertility Evaluation in a Large Grain-Production Area of Subtropical Plain, China. Geoderma, 357, Article 113937. https://doi.org/10.1016/j.geoderma.2019.113937 |
[8] | 何明珠, 任建新, 白光祖, 等. 甘肃省陇西县中药材产区耕作土壤养分空间变异研究[J]. 土壤通报, 2023, 54(1): 21-29. |
[9] | 南维鸽, 董治宝, 薛亮, 等. 青藏高原重要交通国道路侧土壤重金属分布特征及生态风险评价[J]. 环境科学, 2024, 45(8): 4825-4836. |
[10] | 龚仓, 王顺祥, 陆海川, 等. 基于地理探测器的土壤重金属空间分异及其影响因素分析研究进展[J]. 环境科学, 2023, 44(5): 2799-2816. |
[11] | Mamut, A., Eziz, M., Mohammad, A. and Anayit, M. (2017) The Spatial Distribution, Contamination, and Ecological Risk Assessment of Heavy Metals of Farmland Soils in Karashahar-Baghrash Oasis, Northwest China. Human and Ecological Risk Assessment: An International Journal, 23, 1300-1314. https://doi.org/10.1080/10807039.2017.1305263 |
[12] | 王金霞, 李谢玲, 何清明, 等. 三峡库区典型农业区土壤重金属污染特征及风险评价[J]. 农业工程学报, 2018, 34(8): 227-234. |
[13] | 周伟, 李丽丽, 周旭, 等. 基于地理探测器的土壤重金属影响因子分析及其污染风险评价[J]. 生态环境学报, 2021, 30(1): 173-180. |
[14] | 刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 2006, 26(3): 901-913. |
[15] | 刘江, 吕涛, 张立欣, 等. 基于主成分分析的不同种植年限甘草地土壤质量评价[J]. 草业学报, 2020, 29(6): 162-171. |
[16] | 吴克宁, 杨淇钧, 赵瑞, 等. 耕地土壤健康及其评价探讨[J]. 土壤学报, 2021, 58(3): 537-544. |
[17] | 李颖慧, 姜小三, 王振华, 等. 基于土壤肥力和重金属污染风险的农用地土壤质量综合评价研究——以山东省博兴县为例[J]. 土壤通报, 2021, 52(5): 1052-1062. |
[18] | 贺思敏. 基于熵权-Topsis模型的土壤生态环境质量综合评价[D]: [硕士学位论文]. 长沙: 湖南大学, 2020. |
[19] | Zheng, C., Yang, X., Liu, Z., Liu, K. and Huang, Y. (2022) Spatial Distribution of Soil Nutrients and Evaluation of Cultivated Land in Xuwen County. PeerJ, 10, e13239. https://doi.org/10.7717/peerj.13239 |
[20] | 邵晓梅, 刘春玲, 张洪业. 鲁西北地区土地现实生产力调查与估算[J]. 地理研究, 2005, 24(4): 535-541. |
[21] | 吴强建, 肖委明, 赵晓东, 等. 江西井冈蜜柚种植区果园土壤肥力现状及区域分布特征[J]. 农业资源与环境学报, 2022, 39(5): 1025-1032. |
[22] | 张彬, 杨联安, 冯武焕, 等. 基于改进TOPSIS和COK的土壤养分综合评价[J]. 干旱区资源与环境, 2016, 30(7): 180-185. |
[23] | Vidana Gamage, D.N., Biswas, A. and Strachan, I.B. (2019) Spatial Variability of Soil Thermal Properties and Their Relationships with Physical Properties at Field Scale. Soil and Tillage Research, 193, 50-58. https://doi.org/10.1016/j.still.2019.05.012 |
[24] | Nemerow, N.L. (1974) Scientific Stream Pollution Analysis. Scripta Book Company. |
[25] | 李丹丹, 周忠发, 但雨生, 等. 基于组合赋权TOPSIS模型的土壤养分空间分析及综合评价——以瓮安县为例[J]. 环境工程, 2018, 36(8): 183-188. |