全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进哈里斯鹰算法的齿轮传动误差研究
The Study of Gear Transmission Error Based on the Improved Harris Hawk Algorithm

DOI: 10.12677/met.2025.141007, PP. 73-84

Keywords: 哈里斯鹰算法,PID,编织装备,传动误差,齿轮
Harris Algorithm
, PID, Weaving Equipment, Transmission Error, Gear

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对三维立体编织装备在运行时编织参数误差较大的问题,文章研究了一种基于改进哈里斯鹰优化算法PID的参数整定控制同步电机连接齿轮传动的方法。首先采用Tent混沌映射和小孔成像反向学习方法保证初始种群的多样化及增加精英个体数量,提升算法收敛性能;其次,在能量线性递减机制中引入动态自适应权重的非线性表达,提升算法全局搜索及局部开发行为的平衡能力;最后将该方法分别与HHO和PSO进行比较。仿真结果表明:齿轮1的初始转速误差分别降低1.9%、2.9%,负载突变转矩误差分别降低0.75%、4.75%。
To address the issue of large errors in weaving parameters when operating three-dimensional weaving equipment, the article studies a parameter tuning control method based on an improved Harris Hawk Optimization (HHO) algorithm with PID proposed for the synchronous motor connected to a gear drive system. Firstly, the Tent chaotic mapping and small hole imaging reverse learning methods are employed to ensure the diversity of the initial population and increase the number of elite individuals, enhancing the algorithm’s convergence performance. Secondly, a dynamic adaptive weight nonlinear expression is introduced into the energy linear decay mechanism to improve the balance between the global search and local exploitation capabilities of the algorithm. Finally, the proposed method is compared with HHO and PSO. Simulation results show that the initial speed error of gear 1 is reduced by 1.9% and 2.9%, respectively, and the load torque fluctuation error is reduced by 0.75% and 4.75%, respectively.

References

[1]  吴暐, 吴孝泉. 计入齿形误差的直齿圆柱齿轮传动特性研究[J]. 机械设计与制造, 2023(5): 5-11, 16.
[2]  尹逊民, 贾海涛, 张西金. 内啮合短齿高直齿轮承载传动误差研究[J]. 机械传动, 2023, 47(6): 22-26.
[3]  Shi, P.D., Chuan, J. and Yu, X. (2023) PID Parameter Tuning Based on Improved Particle Swarm Optimization Algorithm. Journal of Physics: Conference Series, 2493, Article 012005.
https://doi.org/10.1088/1742-6596/2493/1/012005
[4]  占家豪. 改进哈里斯鹰优化算法在路径寻优中的应用[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2022.
[5]  郭雨鑫, 刘升, 高文欣, 等. 精英反向学习与黄金正弦优化的HHO算法[J]. 计算机工程与应用, 2022, 58(10): 153-161.
[6]  Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019) Harris Hawks Optimization: Algorithm and Applications. Future Generation Computer Systems, 97, 849-872.
https://doi.org/10.1016/j.future.2019.02.028
[7]  孙雅芝. 粗糙集与智能优化算法在特征选择中的应用研究[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2023.
[8]  展广涵, 王雨虹, 刘昊. 混合策略改进的哈里斯鹰优化算法及其应用[J]. 传感技术学报, 2022, 35(10): 1394-1403.
[9]  栾孝驰, 张席, 沙云东, 等. 基于灰狼算法优化极限学习机的中介轴承故障诊断方法[J]. 推进技术, 2024, 45(4): 195-205.
[10]  聂诚, 张世盈, 李烨, 等. 基于ADAMS的新型狙击榴弹发射器动力学仿真[J]. 兵器装备工程学报, 2024, 45(9): 190-199.
[11]  韩志琦, 董远明, 何鑫龄, 等. 基于Adams/Simulink的主动横向稳定杆联合仿真[J]. 内燃机与配件, 2023(19): 27-29.
[12]  智瀚宇, 贾新春, 张学立. 无人机路径规划: 一种粒子群和灰狼复合算法[J/OL]. 控制工程: 1-8.
https://kns.cnki.net/kcms2/article/abstract?v=nKttgsEmyDfZKQal4sP3X-EDbLVbVpwlMrLY-ieHB7g18ySJTHsg2O2xpPdHN_WpmueWU6DxLPb56zMdXRVmPqF8eK8NyaQbebx6HkOltRy3suRVrjfU1IjV_V-twyMMCSlFfAFMhZyZpcDwBWNuCxUo6E7LmJsdxTHthrk4scgbiA5s721srqZoqJSN9Wd_pd-Rlg_Fsv78r-VtLqB9hg==&uniplatform=NZKPT, 2024-05-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133