|
肾移植术后血脂代谢异常的危险因素及治疗进展
|
Abstract:
血脂代谢异常是肾移植术后常见的并发症,可导致心血管疾病,严重影响患者及移植物存活。肾移植术后免疫抑制剂的使用可能是导致血脂异常的主要原因。降脂的目标为低密度脂蛋白胆固醇,他汀类药物为一线降脂药物,其次是与依折麦布联合使用。然而,应考虑他汀类药物与免疫抑制剂之间的药物相互作用。一些新型降脂药物,如PCSK9抑制剂、血管生成素样蛋白3 (ANGPTL3)和载脂蛋白C3 (apoC3)抑制剂,可有效降低低密度脂蛋白胆固醇和心血管疾病风险,并可能成为对他汀类药物耐药或不耐受的肾移植受者有前景的降脂方案。本文就肾移植术后血脂紊乱的危险因素、当前及未来治疗进展作一综述。
Dyslipidemia is a common complication after kidney transplantation, which can lead to cardiovascular disease and seriously affect patient and graft survival. The use of immunosuppressive drugs after kidney transplantation may be the main cause of dyslipidemia. The target for lipid lowering is LDL cholesterol, and statins are first-line lipid-lowering agents, followed by combination with ezetimibe. However, drug interactions between statins and immunosuppressants should be considered. Some novel lipid-lowering agents, such as PCSK9 inhibitors, angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C3 (apoC3) inhibitors, are effective in lowering LDL cholesterol and cardiovascular disease risk and may be promising lipid-lowering regimens for kidney transplant recipients who are resistant or intolerant to statins. This article provides a review of risk factors, current and future therapeutic advances in dyslipidemia after kidney transplantation.
[1] | Stoumpos, S., Jardine, A.G. and Mark, P.B. (2024) Cardiovascular Morbidity and Mortality after Kidney Transplantation. Transplant International, 28, 10-21. https://pubmed.ncbi.nlm.nih.gov/25081992/ |
[2] | Fellström, B., Holdaas, H. and Jardine, A. (2004) Cardiovascular Disease in Renal Transplantation: Management by Statins. Transplantation Reviews, 18, 122-128. https://doi.org/10.1016/j.trre.2004.03.001 |
[3] | Gaston, R.S., Kasiske, B.L., Fieberg, A.M., Leduc, R., Cosio, F.C., Gourishankar, S., et al. (2009) Use of Cardioprotective Medications in Kidney Transplant Recipients. American Journal of Transplantation, 9, 1811-1815. https://doi.org/10.1111/j.1600-6143.2009.02696.x |
[4] | Habbig, S., Volland, R., Krupka, K., Querfeld, U., Dello Strologo, L., Noyan, A., et al. (2017) Dyslipidemia after Pediatric Renal Transplantation—The Impact of Immunosuppressive Regimens. Pediatric Transplantation, 21, e12914. https://doi.org/10.1111/petr.12914 |
[5] | Li, S., Zhou, H., Liu, J., Yang, J., Jiang, L., Yuan, H., et al. (2024) Restoration of HMGCS2-Mediated Ketogenesis Alleviates Tacrolimus-Induced Hepatic Lipid Metabolism Disorder. Acta Pharmacologica Sinica, 45, 1898-1911. https://doi.org/10.1038/s41401-024-01300-0 |
[6] | Houde, V.P., Brûlé, S., Festuccia, W.T., Blanchard, P., Bellmann, K., Deshaies, Y., et al. (2010) Chronic Rapamycin Treatment Causes Glucose Intolerance and Hyperlipidemia by Upregulating Hepatic Gluconeogenesis and Impairing Lipid Deposition in Adipose Tissue. Diabetes, 59, 1338-1348. https://doi.org/10.2337/db09-1324 |
[7] | Kurdi, A., Martinet, W. and De Meyer, G.R.Y. (2018) mTOR Inhibition and Cardiovascular Diseases: Dyslipidemia and Atherosclerosis. Transplantation, 102, S44-S46. https://doi.org/10.1097/tp.0000000000001693 |
[8] | Ponticelli, C., Arnaboldi, L., Moroni, G. and Corsini, A. (2020) Treatment of Dyslipidemia in Kidney Transplantation. Expert Opinion on Drug Safety, 19, 257-267. https://doi.org/10.1080/14740338.2020.1732921 |
[9] | Skulratanasak, P. and Larpparisuth, N. (2023) Lipid Management to Mitigate Poorer Postkidney Transplant Outcomes. Current Opinion in Nephrology and Hypertension, 32, 27-34. https://pubmed.ncbi.nlm.nih.gov/36250471/ |
[10] | Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2020) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-188. |
[11] | Eckardt, K., Kasiske, B.L. and Zeier, M.G. (2009) Special Issue: KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. American Journal of Transplantation, 9, S1-S155. https://doi.org/10.1111/j.1600-6143.2009.02834.x |
[12] | Zhang, Y., Liu, B., Meng, Q., Zhang, D., Yang, H., Li, G., et al. (2023) Targeted Changes in Blood Lipids Improves Fibrosis in Renal Allografts. Lipids in Health and Disease, 22, Article Nol. 215. https://doi.org/10.1186/s12944-023-01978-x |
[13] | Wilkinson, T.J., Clarke, A.L., Nixon, D.G.D., Hull, K.L., Song, Y., Burton, J.O., et al. (2019) Prevalence and Correlates of Physical Activity across Kidney Disease Stages: An Observational Multicentre Study. Nephrology Dialysis Transplantation, 36, 641-649. https://doi.org/10.1093/ndt/gfz235 |
[14] | Zhang, D., Yu, L., Xia, B., Zhang, X., Liang, P. and Hu, X. (2023) Systematic Review and Meta-Analysis of the Efficacy of Exercise Intervention in Kidney Transplant Recipients. World Journal of Urology, 41, 3449-3469. https://doi.org/10.1007/s00345-023-04673-9 |
[15] | Woodle, E.S., First, M.R., Pirsch, J., Shihab, F., Gaber, A.O. and Van Veldhuisen, P. (2008) A Prospective, Randomized, Double-Blind, Placebo-Controlled Multicenter Trial Comparing Early (7 Day) Corticosteroid Cessation versus Long-Term, Low-Dose Corticosteroid Therapy. Annals of Surgery, 248, 564-577. https://doi.org/10.1097/sla.0b013e318187d1da |
[16] | Serrano, O.K., Kandaswamy, R., Gillingham, K., Chinnakotla, S., Dunn, T.B., Finger, E., et al. (2017) Rapid Discontinuation of Prednisone in Kidney Transplant Recipients: 15-Year Outcomes from the University of Minnesota. Transplantation, 101, 2590-2598. https://doi.org/10.1097/tp.0000000000001756 |
[17] | Haller, M.C., Royuela, A., Nagler, E.V., Pascual, J. and Webster, A.C. (2016) Steroid Avoidance or Withdrawal for Kidney Transplant Recipients. Cochrane Database of Systematic Reviews, No. 6, CD005632. https://doi.org/10.1002/14651858.cd005632.pub3 |
[18] | Flechner, S.M., Glyda, M., Cockfield, S., Grinyó, J., Legendre, C., Russ, G., et al. (2011) The ORION Study: Comparison of Two Sirolimus-Based Regimens versus Tacrolimus and Mycophenolate Mofetil in Renal Allograft Recipients. American Journal of Transplantation, 11, 1633-1644. https://doi.org/10.1111/j.1600-6143.2011.03573.x |
[19] | Budde, K., et al. (2011) Everolimus-Based, Calcineurin-Inhibitor-Free Regimen in Recipients of De-Novo Kidney Transplants: An Open-Label, Randomised, Controlled Trial. Lancet, 377, 837-847. https://pubmed.ncbi.nlm.nih.gov/21334736/ |
[20] | Bellos, I., Lagiou, P., Benetou, V. and Marinaki, S. (2024) Efficacy and Safety of Statin Therapy in Kidney Transplant Recipients: A Systematic Review and Meta-Analysis. Lipids in Health and Disease, 23, Article No. 293. https://doi.org/10.1186/s12944-024-02276-w |
[21] | Yim, S.H., Kim, H.J., Ro, H., Ryu, J., Kim, M., Park, J.B., et al. (2024) Benefits of Statin Therapy within a Year after Kidney Transplantation. Scientific Reports, 14, Article No. 2002. https://doi.org/10.1038/s41598-024-52513-6 |
[22] | Bae, S., Ahn, J.B., Joseph, C., Whisler, R., Schnitzler, M.A., Lentine, K.L., et al. (2023) Incidence of Statin-Associated Adverse Events in Kidney Transplant Recipients. Clinical Journal of the American Society of Nephrology, 18, 626-633. https://doi.org/10.2215/cjn.0000000000000124 |
[23] | Sirtori, C.R. (2014) The Pharmacology of Statins. Pharmacological Research, 88, 3-11. https://doi.org/10.1016/j.phrs.2014.03.002 |
[24] | Kosoglou, T., Statkevich, P., Johnson-Levonas, A.O., Paolini, J.F., Bergman, A.J. and Alton, K.B. (2005) Ezetimibe: A Review of Its Metabolism, Pharmacokinetics and Drug Interactions. Clinical Pharmacokinetics, 44, 467-494. https://doi.org/10.2165/00003088-200544050-00002 |
[25] | Goto, H., Iseri, K. and Hida, N. (2023) Fibrates and the Risk of Cardiovascular Outcomes in Chronic Kidney Disease Patients. Nephrology Dialysis Transplantation, 39, 1016-1022. https://doi.org/10.1093/ndt/gfad248 |
[26] | Hadjivasilis, A., Kouis, P., Kousios, A. and Panayiotou, A. (2022) The Effect of Fibrates on Kidney Function and Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis of Randomised Studies. Journal of Clinical Medicine, 11, Article 768. https://doi.org/10.3390/jcm11030768 |
[27] | Mir, O., Poinsignon, V., Arnedos, M., Delaloge, S. and Paci, A. (2015) Pharmacokinetic Interaction Involving Fenofibrate and Everolimus. Annals of Oncology, 26, 248-249. https://doi.org/10.1093/annonc/mdu492 |
[28] | Wang, T., Zhang, X., Zhou, N., Shen, Y., Li, B., Chen, B.E., et al. (2023) Association between ω‐3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta‐Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 12, e029512. https://doi.org/10.1161/jaha.123.029512 |
[29] | Chan, J., Eide, I.A., Tannæs, T.M., Waldum-Grevbo, B., Jenssen, T. and Svensson, M. (2021) Marine N-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The ω-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Medicine, 3, 1041-1049. https://doi.org/10.1016/j.xkme.2021.07.010 |
[30] | Zhang, Y., Pei, Z., Chen, B., Qu, Y., Dong, X., Yu, B., et al. (2024) Ebronucimab in Chinese Patients with Hypercholesterolemia—A Randomized Double-Blind Placebo-Controlled Phase 3 Trial to Evaluate the Efficacy and Safety of Ebronucimab. Pharmacological Research, 207, Article ID: 107340. https://doi.org/10.1016/j.phrs.2024.107340 |
[31] | Hummelgaard, S., Vilstrup, J.P., Gustafsen, C., Glerup, S. and Weyer, K. (2023) Targeting PCSK9 to Tackle Cardiovascular Disease. Pharmacology & Therapeutics, 249, 108480. https://doi.org/10.1016/j.pharmthera.2023.108480 |
[32] | Liu, H. (2024) Association between PCSK9 Inhibitors and Acute Kidney Injury: A Pharmacovigilance Study. Frontiers in Pharmacology, 15, Article 1353848. https://doi.org/10.3389/fphar.2024.1353848 |
[33] | Ueberdiek, L., Jehn, U., Pavenstädt, H., Gebauer, K. and Reuter, S. (2023) Novel Therapeutic Strategies for Dyslipidemia: First Report of Inclisiran Therapy in a Kidney Transplanted Patient. Transplant International, 36, Article 11104. https://doi.org/10.3389/ti.2023.11104 |
[34] | Alotaibi, T., Nagib, A.M., Denewar, A., Aboateya, H., Halim, M.A., Mahmoud, T., et al. (2024) Inhibition of Proprotein Convertase Subtilisin/Kexin-9 after Kidney Transplant: Single-Center Experience among Patients with High Cardiovascular Risk. Experimental and Clinical Transplantation, 22, 315-322. |
[35] | Nissen, S.E., Lincoff, A.M., Brennan, D., Ray, K.K., Mason, D., Kastelein, J.J.P., et al. (2023) Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. The New England Journal of Medicine, 388, 1353-1364. |
[36] | Alunno, A., et al. (2023) Untangling the Relationship between Bempedoic Acid and Gout: Results from a Systematic Literature Review. Frontiers in Cardiovascular Medicine, 10, Article 1234601. https://pubmed.ncbi.nlm.nih.gov/37953764/ |
[37] | Gobeil, É., Bourgault, J., Mitchell, P.L., Houessou, U., Gagnon, E., Girard, A., et al. (2024) Genetic Inhibition of Angiopoietin-Like Protein-3, Lipids, and Cardiometabolic Risk. European Heart Journal, 45, 707-721. https://doi.org/10.1093/eurheartj/ehad845 |
[38] | Calcaterra, I., Lupoli, R., Di Minno, A. and Di Minno, M.N.D. (2022) Volanesorsen to Treat Severe Hypertriglyceridaemia: A Pooled Analysis of Randomized Controlled Trials. European Journal of Clinical Investigation, 52, e13841. https://doi.org/10.1111/eci.13841 |