|
HSP47在心力衰竭等纤维化疾病中的作用
|
Abstract:
热休克蛋白47 (HSP47)是一种内质网(ER)的常驻分子伴侣,对前胶原蛋白的正确折叠至关重要。HSP47表达的增加与纤维化等胶原相关疾病有关,例如肝、肺、消化道肿瘤等器官纤维化疾病。有研究表明,慢性心力衰竭患者心肌HSP47表达随心功能下降而升高,与左室舒张末期内径呈正相关,而与左室射血分数呈负相关,本文就HSP47结构,表达调控,与胶原蛋白的相互作用,及在心力衰竭等各类纤维化疾病中的作用进行描述。
Heat shock protein 47 (HSP47) is a resident molecular chaperone of the endoplasmic reticulum (ER) that is essential for the proper folding of procollagen. The increase in expression of HSP47 is associated with collagen-related diseases such as organ fibrosis in the liver, lungs, and gastrointestinal tract tumors. Studies have shown that cardiac HSP47 expression in patients with chronic heart failure decreases and increases in spontaneous function, which is positively correlated with left ventricular end-diastolic diameter, while negatively correlated with left ventricular ejection fraction. This paper describes the structure, expression regulation, interaction with collagen of HSP, and its role in various fibrotic diseases such as heart failure.
[1] | Nagata, K., Saga, S. and Yamada, K.M. (1986) A Major Collagen-Binding Protein of Chick Embryo Fibroblasts Is a Novel Heat Shock Protein. The Journal of Cell Biology, 103, 223-229. https://doi.org/10.1083/jcb.103.1.223 |
[2] | Hirayoshi, K., Kudo, H., Takechi, H., et al. (1991) HSP47: A Tissue-Specific, Transformation-Sensitive, Collagen-Binding Heat Shock Protein of Chicken Embryo Fibroblasts. Molecular and Cellular Biology, 11, 4036-4044. |
[3] | Pearson, D.S., Kulyk, W.M., Kelly, G.M. and Krone, P.H. (1996) Cloning and Characterization of a cDNA Encoding the Collagen-Binding Stress Protein Hsp47 in Zebrafish. DNA and Cell Biology, 15, 263-272. https://doi.org/10.1089/dna.1996.15.263 |
[4] | Satoh, M., Hirayoshi, K., Yokota, S., Hosokawa, N. and Nagata, K. (1996) Intracellular Interaction of Collagen-Specific Stress Protein HSP47 with Newly Synthesized Procollagen. The Journal of Cell Biology, 133, 469-483. https://doi.org/10.1083/jcb.133.2.469 |
[5] | Niwa, T., Kanamori, T., Ueda, T. and Taguchi, H. (2012) Global Analysis of Chaperone Effects Using a Reconstituted Cell-Free Translation System. Proceedings of the National Academy of Sciences, 109, 8937-8942. https://doi.org/10.1073/pnas.1201380109 |
[6] | Nagai, N., Hosokawa, M., Itohara, S., Adachi, E., Matsushita, T., Hosokawa, N., et al. (2000) Embryonic Lethality of Molecular Chaperone Hsp47 Knockout Mice Is Associated with Defects in Collagen Biosynthesis. The Journal of Cell Biology, 150, 1499-1506. https://doi.org/10.1083/jcb.150.6.1499 |
[7] | Masago, Y., Hosoya, A., Kawasaki, K., Kawano, S., Nasu, A., Toguchida, J., et al. (2012) The Molecular Chaperone Hsp47 Is Essential for Cartilage and Endochondral Bone Formation. Journal of Cell Science, 125, 1118-1128. https://doi.org/10.1242/jcs.089748 |
[8] | Söderhäll, C., Marenholz, I., Kerscher, T., Rüschendorf, F., Esparza-Gordillo, J., Worm, M., et al. (2007) Variants in a Novel Epidermal Collagen Gene (COL29A1) Are Associated with Atopic Dermatitis. PLOS Biology, 5, e242. https://doi.org/10.1371/journal.pbio.0050242 |
[9] | Bourhis, J., Mariano, N., Zhao, Y., Harlos, K., Exposito, J., Jones, E.Y., et al. (2012) Structural Basis of Fibrillar Collagen Trimerization and Related Genetic Disorders. Nature Structural & Molecular Biology, 19, 1031-1036. https://doi.org/10.1038/nsmb.2389 |
[10] | Engel, J. (1991) The Zipper-Like Folding of Collagen Triple Helices and the Effects of Mutations That Disrupt the Zipper. Annual Review of Biophysics and Biophysical Chemistry, 20, 137-152. |
[11] | Saga, S., Nagata, K., Chen, W.T. and Yamada, K.M. (1987) Ph-Dependent Function, Purification, and Intracellular Location of a Major Collagen-Binding Glycoprotein. The Journal of Cell Biology, 105, 517-527. https://doi.org/10.1083/jcb.105.1.517 |
[12] | Nakai, A., Satoh, M., Hirayoshi, K. and Nagata, K. (1992) Involvement of the Stress Protein HSP47 in Procollagen Processing in the Endoplasmic Reticulum. The Journal of Cell Biology, 117, 903-914. https://doi.org/10.1083/jcb.117.4.903 |
[13] | Makareeva, E. and Leikin, S. (2007) Procollagen Triple Helix Assembly: An Unconventional Chaperone-Assisted Folding Paradigm. PLOS ONE, 2, e1029. https://doi.org/10.1371/journal.pone.0001029 |
[14] | Thomson, C.A. and Ananthanarayanan, V.S. (2000) Structure-Function Studies on Hsp47: Ph-Dependent Inhibition of Collagen Fibril Formation in Vitro. Biochemical Journal, 349, 877-883. https://doi.org/10.1042/bj3490877 |
[15] | Friedman, S.L. (2000) Molecular Regulation of Hepatic Fibrosis, an Integrated Cellular Response to Tissue Injury. Journal of Biological Chemistry, 275, 2247-2250. https://doi.org/10.1074/jbc.275.4.2247 |
[16] | Sato, Y., Murase, K., Kato, J., Kobune, M., Sato, T., Kawano, Y., et al. (2008) Resolution of Liver Cirrhosis Using Vitamin A-Coupled Liposomes to Deliver siRNA against a Collagen-Specific Chaperone. Nature Biotechnology, 26, 431-442. https://doi.org/10.1038/nbt1396 |
[17] | Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., et al. (2012) Myofibroblasts Revert to an Inactive Phenotype during Regression of Liver Fibrosis. Proceedings of the National Academy of Sciences, 109, 9448-9453. https://doi.org/10.1073/pnas.1201840109 |
[18] | Kawasaki, K., Ushioda, R., Ito, S., Ikeda, K., Masago, Y. and Nagata, K. (2015) Deletion of the Collagen-Specific Molecular Chaperone Hsp47 Causes Endoplasmic Reticulum Stress-Mediated Apoptosis of Hepatic Stellate Cells. Journal of Biological Chemistry, 290, 3639-3646. https://doi.org/10.1074/jbc.m114.592139 |
[19] | Dijk, F.S.V. and Sillence, D.O. (2014) Osteogenesis Imperfecta: Clinical Diagnosis, Nomenclature and Severity Assessment. American Journal of Medical Genetics Part A, 164, 1470-1481. |
[20] | Jovanovic, M., Guterman-Ram, G. and Marini, J.C. (2021) Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocrine Reviews, 43, 61-90. https://doi.org/10.1210/endrev/bnab017 |
[21] | Forlino, A. and Marini, J.C. (2016) Osteogenesis Imperfecta. The Lancet, 387, 1657-1671. https://doi.org/10.1016/s0140-6736(15)00728-x |
[22] | Sillence, D.O., Senn, A. and Danks, D.M. (1979) Genetic Heterogeneity in Osteogenesis Imperfecta. Journal of Medical Genetics, 16, 101-116. https://doi.org/10.1136/jmg.16.2.101 |
[23] | Christiansen, H.E., Schwarze, U., Pyott, S.M., AlSwaid, A., Al Balwi, M., Alrasheed, S., et al. (2010) Homozygosity for a Missense Mutation in SERPINH1, Which Encodes the Collagen Chaperone Protein HSP47, Results in Severe Recessive Osteogenesis Imperfecta. The American Journal of Human Genetics, 86, 389-398. https://doi.org/10.1016/j.ajhg.2010.01.034 |
[24] | Ito, S. and Nagata, K. (2016) Mutants of Collagen-Specific Molecular Chaperone Hsp47 Causing Osteogenesis Imperfecta Are Structurally Unstable with Weak Binding Affinity to Collagen. Biochemical and Biophysical Research Communications, 469, 437-442. https://doi.org/10.1016/j.bbrc.2015.12.028 |
[25] | Lindert, U., Weis, M.A., Rai, J., Seeliger, F., Hausser, I., Leeb, T., et al. (2015) Molecular Consequences of the SERPINH1/HSP47 Mutation in the Dachshund Natural Model of Osteogenesis Imperfecta. Journal of Biological Chemistry, 290, 17679-17689. https://doi.org/10.1074/jbc.m115.661025 |
[26] | Burrows, J.A.J., Willis, L.K. and Perlmutter, D.H. (2000) Chemical Chaperones Mediate Increased Secretion of Mutant alpha1-Antitrypsin (alpha1-AT) Z: A Potential Pharmacological Strategy for Prevention of Liver Injury and Emphysema in alpha1-AT Deficiency. Proceedings of the National Academy of Sciences of the United States of America, 97, 1796-1801. |
[27] | Schwab, M. (1998) Amplification of Oncogenes in Human Cancer Cells. BioEssays, 20, 473-479. https://doi.org/10.1002/(sici)1521-1878(199806)20:6<473::aid-bies5>3.0.co;2-n |
[28] | Mori, K., Toiyama, Y., Okugawa, Y., Ichikawa, T., Nagano, Y., Oki, S., et al. (2020) Preoperative Heat Shock Protein 47 levels Identify Colorectal Cancer Patients with Lymph Node Metastasis and Poor Prognosis. Oncology Letters, 20, Article No. 333. https://doi.org/10.3892/ol.2020.12196 |
[29] | Wu, W., Hu, Z., Xiong, L. and Zou, J. (2021) Heat Shock Protein 47 Promotes Cell Migration and Invasion through AKT Signal in Non-Small Cell Lung Cancer. Anti-Cancer Drugs, 33, 268-277. https://doi.org/10.1097/cad.0000000000001262 |
[30] | Chern, Y., Zhang, P., Ju, H. and T. Tai, I. (2020) Heat Shock Protein 47 Promotes Tumor Survival and Therapy Resistance by Modulating AKT Signaling via PHLPP1 in Colorectal Cancer. Cancer Biology and Medicine, 17, 343-356. https://doi.org/10.20892/j.issn.2095-3941.2019.0261 |
[31] | Tian, S., Peng, P., Li, J., Deng, H., Zhan, N., Zeng, Z., et al. (2020) SERPINH1 Regulates EMT and Gastric Cancer Metastasis via the Wnt/β-Catenin Signaling Pathway. Aging, 12, 3574-3593. https://doi.org/10.18632/aging.102831 |
[32] | Chen, J., Wang, S., Zhang, Z., Richards, C.I. and Xu, R. (2019) Heat Shock Protein 47 (HSP47) Binds to Discoidin Domain-Containing Receptor 2 (DDR2) and Regulates Its Protein Stability. Journal of Biological Chemistry, 294, 16846-16854. https://doi.org/10.1074/jbc.ra119.009312 |
[33] | Song, X., Liao, Z., Zhou, C., Lin, R., Lu, J., Cai, L., et al. (2017) HSP47 Is Associated with the Prognosis of Laryngeal Squamous Cell Carcinoma by Inhibiting Cell Viability and Invasion and Promoting Apoptosis. Oncology Reports, 38, 2444-2452. https://doi.org/10.3892/or.2017.5893 |
[34] | Yamamoto, N., Kinoshita, T., Nohata, N., Mitsuhashi, A., Usui, H., Yoshino, H., et al. (2014) Abstract 4350: Tumor-Suppressive Microrna-29a Inhibits Cancer Cell Migration and Invasion via Targeting HSP47 in Cervical Squamous Cell Carcinoma. Cancer Research, 74, 4350-4350. https://doi.org/10.1158/1538-7445.am2014-4350 |
[35] | Araki, K., Mikami, T., Yoshida, T., Kikuchi, M., Sato, Y., Oh-ishi, M., et al. (2009) High Expression of HSP47 in Ulcerative Colitis-Associated Carcinomas: Proteomic Approach. British Journal of Cancer, 101, 492-497. https://doi.org/10.1038/sj.bjc.6605163 |
[36] | Shackley, D.C., Haylett, A., Whitehurst, C., Betts, C.D., O'Flynn, K., Clarke, N.W., et al. (2002) Comparison of the Cellular Molecular Stress Responses after Treatments Used in Bladder Cancer. BJU International, 90, 924-932. https://doi.org/10.1046/j.1464-410x.2002.03024.x |
[37] | Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., et al. (2018) Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control. Global Heart, 13, Article No. 143. https://doi.org/10.1016/j.gheart.2018.09.511 |
[38] | Frangogiannis, N.G. (2019) Cardiac Fibrosis: Cell Biological Mechanisms, Molecular Pathways and Therapeutic Opportunities. Molecular Aspects of Medicine, 65, 70-99. https://doi.org/10.1016/j.mam.2018.07.001 |
[39] | Sun, H., Wu, Z., Nie, X., Wang, X. and Bian, J. (2021) An Updated Insight into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury under Diabetes. Frontiers in Pharmacology, 12, Article ID: 651884. https://doi.org/10.3389/fphar.2021.651884 |
[40] | Xie, S., Xing, Y., Shi, W., Zhang, M., Chen, M., Fang, W., et al. (2022) Cardiac Fibroblast Heat Shock Protein 47 Aggravates Cardiac Fibrosis Post Myocardial Ischemia-Reperfusion Injury by Encouraging Ubiquitin Specific Peptidase 10 Dependent Smad4 Deubiquitination. Acta Pharmaceutica Sinica B, 12, 4138-4153. https://doi.org/10.1016/j.apsb.2022.07.022 |
[41] | Ziaeian, B. and Fonarow, G.C. (2016) Epidemiology and Aetiology of Heart Failure. Nature Reviews Cardiology, 13, 368-378. https://doi.org/10.1038/nrcardio.2016.25 |
[42] | Baehr, A., Umansky, K.B., Bassat, E., Jurisch, V., Klett, K., Bozoglu, T., et al. (2020) Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation, 142, 868-881. https://doi.org/10.1161/circulationaha.119.045116 |
[43] | Cheng, L., Sun, X., Zhao, X., Wang, L., Yu, J., Pan, G., et al. (2016) Surface Biofunctional Drug-Loaded Electrospun Fibrous Scaffolds for Comprehensive Repairing Hypertrophic Scars. Biomaterials, 83, 169-181. https://doi.org/10.1016/j.biomaterials.2016.01.002 |
[44] | 田倪妮, 魏玲, 李宏键, 等. 慢性心力衰竭患者心肌热休克蛋白47的表达及其与纤维化的相关性研究[J]. 中国动脉硬化杂志, 2015, 23(6): 579-583. |
[45] | 段卡丹, 张守彦, 李松森. 肥厚型心肌病病人血清HSP47、NT-proBNP水平与心肌纤维化影像学指标的相关性[J]. 中西医结合心脑血管病杂志, 2020, 18(20): 3412-3415. |
[46] | Bellaye, P., Burgy, O., Bonniaud, P. and Kolb, M. (2021) HSP47: A Potential Target for Fibrotic Diseases and Implications for Therapy. Expert Opinion on Therapeutic Targets, 25, 49-62. https://doi.org/10.1080/14728222.2021.1861249 |
[47] | King, T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., et al. (2014) A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2083-2092. https://doi.org/10.1056/nejmoa1402582 |
[48] | 林梦娇, 田倪妮, 魏玲, 等. 慢性缺氧大鼠心肌HSP47 mRNA的表达及其与PICP和PIIINP含量的相关性研究[J]. 中华老年多器官疾病杂志, 2017, 16(4): 288-292. |
[49] | 沈伟伟, 于俊民. 心肌梗死后心肌纤维化分子机制研究进展[J]. 医学综述, 2017, 23(7): 1249-1253. |