|
基层二甲双胍治疗对老年2型糖尿病患者认知功能的影响
|
Abstract:
目的:在社区老年2型糖尿病人群中评估口服二甲双胍年限对老年人认知功能的影响。方法:选取青岛市泊里社区体检的1114名65以上的口服二甲双胍的糖尿病患者为研究对象,收集年龄、体质指数(BMI)、学历、是否吸烟,高血压病史、重大精神疾病史、脑血管病史、谷丙转氨酶、谷草转氨酶、肌酐、总胆固醇、甘油三酯、低密度脂蛋白、高密度脂蛋白、空腹血糖资料。用简明认知功能量表(MMSE)评估认知功能,以是否患有认知障碍为因变量,比较收集的资料是否与认知障碍有相关性,并应用logistic回归分析二甲双胍治疗年限对认知功能的影响。结果:认知障碍和非认知障碍的老年2型糖尿病患者相比,体质指数、收缩压、舒张压、谷草转氨酶、谷丙转氨酶、肌酐、总胆固醇、甘油三酯、空腹血糖、是否吸烟、是否高血压无统计学差异(p > 0.05);与非认知障碍组相比,认知障碍组的年龄、低密度脂蛋白、高密度脂蛋白更高(p < 0.05)。口服二甲双胍10年以上对老年2型糖尿病患者认知功能有显著统计学意义的保护作用。结论:二甲双胍的神经认知保护作用受到病程年数的影响,预防2型糖尿病患者认知障碍和痴呆的关键是关注传统的危险因素。
Objective: To evaluate the effect of the duration of oral metformin treatment on cognitive function in elderly patients with type 2 diabetes in a community setting. Methods: This study included 1114 diabetic patients aged 65 and above taking oral metformin from the Poli community in Qingdao. Data collected included age, body mass index (BMI), education level, smoking status, history of hypertension, major psychiatric disorders, cerebrovascular disease, levels of alanine transaminase (ALT), aspartate transaminase (AST), creatinine, total cholesterol, triglycerides, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and fasting blood glucose. Cognitive function was assessed using the Mini-Mental State Examination (MMSE). Cognitive impairment was used as the dependent variable to analyze the correlation between the collected data and cognitive impairment, and logistic regression was applied to evaluate the effect of the duration of metformin treatment on cognitive function. Results: Comparing elderly type 2 diabetic patients with and without cognitive impairment, no significant differences were found in BMI, systolic blood pressure, diastolic blood pressure, AST, ALT, creatinine, total cholesterol, triglycerides, fasting blood glucose, smoking status, or history of hypertension (p > 0.05). The cognitive impairment group had significantly higher age, LDL, and HDL compared to the non-cognitive impairment group (p < 0.05). Oral metformin treatment for 10 years or more showed a statistically significant protective effect on cognitive function in elderly type 2 diabetic patients. Conclusion: The neurocognitive protective effect of metformin is influenced by the duration of treatment. The key to preventing cognitive impairment and dementia in type 2 diabetic patients lies in addressing traditional risk factors.
[1] | Biessels, G.J. and Whitmer, R.A. (2019) Cognitive Dysfunction in Diabetes: How to Implement Emerging Guidelines. Diabetologia, 63, 3-9. https://doi.org/10.1007/s00125-019-04977-9 |
[2] | Biessels, G.J. and Despa, F. (2018) Cognitive Decline and Dementia in Diabetes Mellitus: Mechanisms and Clinical Implications. Nature Reviews Endocrinology, 14, 591-604. https://doi.org/10.1038/s41574-018-0048-7 |
[3] | IDF (2021) IDF Diabetes Atlas 2021. |
[4] | Gregg, E.W., Li, Y., Wang, J., Rios Burrows, N., Ali, M.K., Rolka, D., et al. (2014) Changes in Diabetes-Related Complications in the United States, 1990-2010. New England Journal of Medicine, 370, 1514-1523. https://doi.org/10.1056/nejmoa1310799 |
[5] | Gregg, E.W., Sattar, N. and Ali, M.K. (2016) The Changing Face of Diabetes Complications. The Lancet Diabetes & Endocrinology, 4, 537-547. https://doi.org/10.1016/s2213-8587(16)30010-9 |
[6] | Dolan, C., Glynn, R., Griffin, S., Conroy, C., Loftus, C., Wiehe, P.C., et al. (2018) Brain Complications of Diabetes Mellitus: A Cross‐Sectional Study of Awareness among Individuals with Diabetes and the General Population in Ireland. Diabetic Medicine, 35, 871-879. https://doi.org/10.1111/dme.13639 |
[7] | McCrimmon, R.J., Ryan, C.M. and Frier, B.M. (2012) Diabetes and Cognitive Dysfunction. The Lancet, 379, 2291-2299. https://doi.org/10.1016/s0140-6736(12)60360-2 |
[8] | Ennis, G.E., Saelzler, U., Umpierrez, G.E. and Moffat, S.D. (2020) Prediabetes and Working Memory in Older Adults. Brain and Neuroscience Advances, 4. https://doi.org/10.1177/2398212820961725 |
[9] | Marseglia, A., Dahl Aslan, A.K., Fratiglioni, L., Santoni, G., Pedersen, N.L. and Xu, W. (2017) Cognitive Trajectories of Older Adults with Prediabetes and Diabetes: A Population-Based Cohort Study. The Journals of Gerontology: Series A, 73, 400-406. https://doi.org/10.1093/gerona/glx112 |
[10] | Shang, Y., Fratiglioni, L., Vetrano, D.L., Dove, A., Welmer, A. and Xu, W. (2021) Not Only Diabetes but Also Prediabetes Leads to Functional Decline and Disability in Older Adults. Diabetes Care, 44, 690-698. https://doi.org/10.2337/dc20-2232 |
[11] | Zheng, F., Yan, L., Yang, Z., Zhong, B. and Xie, W. (2018) HbA1c, Diabetes and Cognitive Decline: The English Longitudinal Study of Ageing. Diabetologia, 61, 839-848. https://doi.org/10.1007/s00125-017-4541-7 |
[12] | Yang, Y., Lu, X., Liu, N., Ma, S., Zhang, H., Zhang, Z., et al. (2024) Metformin Decelerates Aging Clock in Male Monkeys. Cell, 187, 6358-6378.E29. https://doi.org/10.1016/j.cell.2024.08.021 |
[13] | Campbell, J.M., Stephenson, M.D., de Courten, B., Chapman, I., Bellman, S.M. and Aromataris, E. (2018) Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 65, 1225-1236. https://doi.org/10.3233/jad-180263 |
[14] | Mohammed, I., Hollenberg, M.D., Ding, H. and Triggle, C.R. (2021) A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Frontiers in Endocrinology, 12, Article 718942. https://doi.org/10.3389/fendo.2021.718942 |
[15] | Chaudhari, K., Reynolds, C.D. and Yang, S. (2020) Metformin and Cognition from the Perspectives of Sex, Age, and Disease. GeroScience, 42, 97-116. https://doi.org/10.1007/s11357-019-00146-3 |
[16] | Crum, R.M. (1993) Population-based Norms for the Mini-Mental State Examination by Age and Educational Level. JAMA: The Journal of the American Medical Association, 269, 2386-2391. https://doi.org/10.1001/jama.1993.03500180078038 |
[17] | Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., et al. (2020) Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. The Lancet, 396, 413-446. https://doi.org/10.1016/s0140-6736(20)30367-6 |
[18] | Hosoki, S., Hansra, G.K., Jayasena, T., Poljak, A., Mather, K.A., Catts, V.S., et al. (2023) Molecular Biomarkers for Vascular Cognitive Impairment and Dementia. Nature Reviews Neurology, 19, 737-753. https://doi.org/10.1038/s41582-023-00884-1 |
[19] | Niu, M., Yin, F., Liu, L., Fang, Y., Xuan, X. and Wu, G. (2013) Non-High-Density Lipoprotein Cholesterol and Other Risk Factors of Mild Cognitive Impairment among Chinese Type 2 Diabetic Patients. Journal of Diabetes and its Complications, 27, 443-446. https://doi.org/10.1016/j.jdiacomp.2013.06.001 |
[20] | Low, S., Ng, T.P., Goh, K.S., Moh, A., Khoo, J., Ang, K., et al. (2024) Reduced Skeletal Muscle Mass to Visceral Fat Area Ratio Is Independently Associated with Reduced Cognitive Function in Type 2 Diabetes Mellitus. Journal of Diabetes and Its Complications, 38, Article 108672. https://doi.org/10.1016/j.jdiacomp.2023.108672 |
[21] | Feter, N., de Paula, D., dos Reis, R.C.P., Raichlen, D., Patrão, A.L., Barreto, S.M., et al. (2024) Leisure-Time Physical Activity May Attenuate the Impact of Diabetes on Cognitive Decline in Middle-Aged and Older Adults: Findings from the Elsa-Brasil Study. Diabetes Care, 47, 427-434. https://doi.org/10.2337/dc23-1524 |
[22] | Hung, K., Liu, C., Wu, J., Ho, C., Lin, M., Hsing, C., et al. (2023) Association between the Neutrophil-to-Lymphocyte Ratio and Cognitive Impairment: A Meta-Analysis of Observational Studies. Frontiers in Endocrinology, 14, Article 1265637. https://doi.org/10.3389/fendo.2023.1265637 |
[23] | Zhao, L., Wang, Y., Bawa, E.M., Meng, Z., Wei, J., Newman-Norlund, S., et al. (2024) Identifying a Group of Factors Predicting Cognitive Impairment among Older Adults. PLOS ONE, 19, e0301979. https://doi.org/10.1371/journal.pone.0301979 |
[24] | Brackett, C.C. (2010) Clarifying Metformin’s Role and Risks in Liver Dysfunction. Journal of the American Pharmacists Association, 50, 407-410. https://doi.org/10.1331/japha.2010.08090 |
[25] | Wulffelé, M.G., Kooy, A., de Zeeuw, D., Stehouwer, C.D.A. and Gansevoort, R.T. (2004) The Effect of Metformin on Blood Pressure, Plasma Cholesterol and Triglycerides in Type 2 Diabetes Mellitus: A Systematic Review. Journal of Internal Medicine, 256, 1-14. https://doi.org/10.1111/j.1365-2796.2004.01328.x |
[26] | Hamidi Shishavan, M., Henning, R.H., van Buiten, A., Goris, M., Deelman, L.E. and Buikema, H. (2017) Metformin Improves Endothelial Function and Reduces Blood Pressure in Diabetic Spontaneously Hypertensive Rats Independent from Glycemia Control: Comparison to Vildagliptin. Scientific Reports, 7, Article No. 10975. https://doi.org/10.1038/s41598-017-11430-7 |
[27] | Rosell-Díaz, M. and Fernández-Real, J.M. (2023) Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocrine Reviews, 45, 210-226. https://doi.org/10.1210/endrev/bnad029 |
[28] | Samaras, K., Makkar, S., Crawford, J.D., Kochan, N.A., Wen, W., Draper, B., et al. (2020) Metformin Use Is Associated with Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults with Type 2 Diabetes: The Sydney Memory and Ageing Study. Diabetes Care, 43, 2691-2701. https://doi.org/10.2337/dc20-0892 |
[29] | Zhang, Q., Li, W., Liu, Z., Zhang, H., Ba, Y. and Zhang, R. (2020) Metformin Therapy and Cognitive Dysfunction in Patients with Type 2 Diabetes. Medicine, 99, e19378. https://doi.org/10.1097/md.0000000000019378 |
[30] | Dai, J., Ports, K.D., Corrada, M.M., Odegaard, A.O., O’Connell, J. and Jiang, L. (2022) Metformin and Dementia Risk: A Systematic Review with Respect to Time Related Biases. Journal of Alzheimer’s Disease Reports, 6, 443-459. https://doi.org/10.3233/adr-220002 |
[31] | Luo, A., Xie, Z., Wang, Y., Wang, X., Li, S., Yan, J., et al. (2022) Type 2 Diabetes Mellitus-Associated Cognitive Dysfunction: Advances in Potential Mechanisms and Therapies. Neuroscience & Biobehavioral Reviews, 137, Article 104642. https://doi.org/10.1016/j.neubiorev.2022.104642 |