全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

酚苷类化合物的药理作用及其制剂技术的研究进展
Advances in Pharmacological Effects of Phenolic Glycosides and Preparation Technology

DOI: 10.12677/acm.2025.152439, PP. 1010-1020

Keywords: 酚苷类化合物,药理作用,口服生物利用度,制剂技术
Phenol Glycosides
, Pharmacologic Action, Oral Bioavailability, Preparation Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

酚苷类化合物广泛存在于自然界多种植物中,具有抗氧化、抗炎、抗菌、抗癌、血糖血脂调节作用、美白和保护身体各器官等多种药理作用,但口服生物利用度低是其主要问题。本文概述了酚苷类化合物的药理作用,以及制备脂质体、纳米颗粒、乳液、磷脂复合物、环糊精包合物等提高生物利用度的技术方法,以期为酚苷类化合物的活性研究及临床应用提供参考。
Phenolic glycosides are widely found in many plants in nature, with antioxidant, anti-inflammatory, antibacterial, anticancer, blood glucose and lipid regulation, whitening and protective effects on various organs of the body, etc. However, low oral bioavailability has always been the main problem. In this paper, the pharmacological effects of phenolic glycosides and the methods of preparing liposomes, nanoparticles, emulsion delivery systems, phospholipid complexes and cyclodextrin inclusion complexes to improve bioavailability were summarized, in order to provide theoretical basis for the activity research and clinical application of phenolic glycosides.

References

[1]  Johnson, J.B., Mani, J.S., Broszczak, D., Prasad, S.S., Ekanayake, C.P., Strappe, P., et al. (2021) Hitting the Sweet Spot: A Systematic Review of the Bioactivity and Health Benefits of Phenolic Glycosides from Medicinally Used Plants. Phytotherapy Research, 35, 3484-3508.
https://doi.org/10.1002/ptr.7042
[2]  刘桢, 吕玉秀, 张璟雯, 等. 雀嘴茶中三大酚类成分的抗氧化活性和酪氨酸酶抑制活性分析[J]. 食品工业科技, 2023, 44(8): 405-411.
[3]  Kosakowska, O., Bączek, K., Przybył, J.L., Pióro-Jabrucka, E., Czupa, W., Synowiec, A., et al. (2018) Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules, 23, Article 1767.
https://doi.org/10.3390/molecules23071767
[4]  Xing, S., Yang, X., Li, W., Bian, F., Wu, D., Chi, J., et al. (2014) Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 904834.
https://doi.org/10.1155/2014/904834
[5]  Lai, X., Zhang, Y., Wu, J., Shen, M., Yin, S. and Yan, J. (2023) Rutin Attenuates Oxidative Stress via PHB2-Mediated Mitophagy in MPP+-Induced SH-SY5Y Cells. Neurotoxicity Research, 41, 242-255.
https://doi.org/10.1007/s12640-023-00636-5
[6]  Sukprasansap, M., Chanvorachote, P. and Tencomnao, T. (2020) Retracted Article: Cyanidin-3-Glucoside Activates Nrf2-Antioxidant Response Element and Protects against Glutamate-Induced Oxidative and Endoplasmic Reticulum Stress in HT22 Hippocampal Neuronal Cells. BMC Complementary Medicine and Therapies, 20, Article No. 46.
https://doi.org/10.1186/s12906-020-2819-7
[7]  Zhai, K., Duan, H., Khan, G.J., Xu, H., Han, F., Cao, W., et al. (2018) Salicin from Alangium chinense Ameliorates Rheumatoid Arthritis by Modulating the Nrf2-HO-1-Ros Pathways. Journal of Agricultural and Food Chemistry, 66, 6073-6082.
https://doi.org/10.1021/acs.jafc.8b02241
[8]  Verma, N., Verma, R., Kumari, R., Ranjha, R. and Paul, J. (2013) Effect of Salicin on Gut Inflammation and on Selected Groups of Gut Microbiota in Dextran Sodium Sulfate Induced Mouse Model of Colitis. Inflammation Research, 63, 161-169.
https://doi.org/10.1007/s00011-013-0685-1
[9]  Zhang, Z., Zhou, Z., Liu, J., Zheng, L., Peng, X., Zhao, L., et al. (2024) Salicin Alleviates Periodontitis via Tas2r143/gustducin Signaling in Fibroblasts. Frontiers in Immunology, 15, Article 1374900.
https://doi.org/10.3389/fimmu.2024.1374900
[10]  Song, Y., Tian, X., Wang, X. and Feng, H. (2019) Vascular Protection of Salicin on Il-1β-Induced Endothelial Inflammatory Response and Damages in Retinal Endothelial Cells. Artificial Cells, Nanomedicine, and Biotechnology, 47, 1995-2002.
https://doi.org/10.1080/21691401.2019.1608220
[11]  Yao, Y., Zhang, X., Xu, Y., Zhao, Y., Song, F., Tian, Z., et al. (2022) Cyanidin-3-O-β-Glucoside Attenuates Platelet Chemokines and Their Receptors in Atherosclerotic Inflammation of Apoe–/– Mice. Journal of Agricultural and Food Chemistry, 70, 8254-8263.
https://doi.org/10.1021/acs.jafc.2c01844
[12]  Ma, B., Wu, Y., Chen, B., Yao, Y., Wang, Y., Bai, H., et al. (2019) Cyanidin-3-O-β-Glucoside Attenuates Allergic Airway Inflammation by Modulating the Il-4rα-Stat6 Signaling Pathway in a Murine Asthma Model. International Immunopharmacology, 69, 1-10.
https://doi.org/10.1016/j.intimp.2019.01.008
[13]  Li, X., Sun, M. and Long, Y. (2020) Cyanidin-3-O-Glucoside Attenuates Lipopolysaccharide-Induced Inflammation in Human Corneal Epithelial Cells by Inducing Let-7b-5p-Mediated HMGA2/PI3K/Akt Pathway. Inflammation, 43, 1088-1096.
https://doi.org/10.1007/s10753-020-01194-0
[14]  Gan, Y., Fu, Y., Yang, L., Chen, J., Lei, H. and Liu, Q. (2020) Cyanidin-3-O-Glucoside and Cyanidin Protect against Intestinal Barrier Damage and 2, 4, 6-Trinitrobenzenesulfonic Acid-Induced Colitis. Journal of Medicinal Food, 23, 90-99.
https://doi.org/10.1089/jmf.2019.4524
[15]  Zhou, Y., Wang, S., Wan, T., Huang, Y., Pang, N., Jiang, X., et al. (2020) Cyanidin-3-O-β-Glucoside Inactivates NLRP3 Inflammasome and Alleviates Alcoholic Steatohepatitis via SirT1/NF-κB Signaling Pathway. Free Radical Biology and Medicine, 160, 334-341.
https://doi.org/10.1016/j.freeradbiomed.2020.08.006
[16]  Sun, Y. and Li, L. (2018) Cyanidin‐3‐Glucoside Inhibits Inflammatory Activities in Human Fibroblast‐Like Synoviocytes and in Mice with Collagen‐Induced Arthritis. Clinical and Experimental Pharmacology and Physiology, 45, 1038-1045.
https://doi.org/10.1111/1440-1681.12970
[17]  王路瑶, 胡继划, 唐焓嫣, 等. 中药抑菌作用特点及其开发优势研究[J]. 国外医药(抗生素分册), 2023, 44(2): 91-95.
[18]  Jiang, K., Zhao, G., Deng, G., Wu, H., Yin, N., Chen, X., et al. (2016) Polydatin Ameliorates Staphylococcus Aureus-Induced Mastitis in Mice via Inhibiting TLR2-Mediated Activation of the P38 MAPK/NF-κB Pathway. Acta Pharmacologica Sinica, 38, 211-222.
https://doi.org/10.1038/aps.2016.123
[19]  Zhao, G., Jiang, K., Wu, H., Qiu, C., Deng, G. and Peng, X. (2017) Polydatin Reduces Staphylococcus aureus Lipoteichoic Acid‐Induced Injury by Attenuating Reactive Oxygen Species Generation and TLR2-NFκB Signalling. Journal of Cellular and Molecular Medicine, 21, 2796-2808.
https://doi.org/10.1111/jcmm.13194
[20]  Zhao, D., Du, B., Xu, J., Xie, Q., Lu, Z. and Kang, Y. (2022) Baicalin Promotes Antibacterial Defenses by Modulating Mitochondrial Function. Biochemical and Biophysical Research Communications, 621, 130-136.
https://doi.org/10.1016/j.bbrc.2022.06.084
[21]  Li, L., Cui, H., Zhang, Y., Xie, W., Lin, Y., Guo, Y., et al. (2023) Baicalin Ameliorates Multidrug-Resistant Pseudomonas aeruginosa Induced Pulmonary Inflammation in Rat via Arginine Biosynthesis. Biomedicine & Pharmacotherapy, 162, Article ID: 114660.
https://doi.org/10.1016/j.biopha.2023.114660
[22]  Lv, C., Huang, Y., Liu, Z., Yu, D. and Bai, Z. (2016) Salidroside Reduces Renal Cell Carcinoma Proliferation by Inhibiting JAK2/STAT3 Signaling. Cancer Biomarkers, 17, 41-47.
https://doi.org/10.3233/cbm-160615
[23]  Sun, K.X., Xia, H.W. and Xia, R.L. (2015) Anticancer Effect of Salidroside on Colon Cancer through Inhibiting JAK2/STAT3 Signaling Pathway. International Journal of Clinical and Experimental Pathology, 8, 615-621.
[24]  Zhao, G., Shi, A., Fan, Z. and Du, Y. (2015) Salidroside Inhibits the Growth of Human Breast Cancer in Vitro and in Vivo. Oncology Reports, 33, 2553-2560.
https://doi.org/10.3892/or.2015.3857
[25]  Wang, L., Liu, F., Liu, Y., et al. (2019) [Cyanidin-3-O-Glucoside Inhibits Proliferation of Colorectal Cancer Cells by Targeting TOPK]. Chinese Journal of Cellular and Molecular Immunology, 35, 1101-1108.
[26]  Chen, X., Zhang, W. and Xu, X. (2021) Cyanidin-3-glucoside Suppresses the Progression of Lung Adenocarcinoma by Downregulating TP53I3 and Inhibiting PI3K/AKT/mTOR Pathway. World Journal of Surgical Oncology, 19, Article No. 232.
https://doi.org/10.1186/s12957-021-02339-7
[27]  Ma, X. and Ning, S. (2018) Cyanidin‐3‐Glucoside Attenuates the Angiogenesis of Breast Cancer via Inhibiting STAT3/VEGF Pathway. Phytotherapy Research, 33, 81-89.
https://doi.org/10.1002/ptr.6201
[28]  Zhang, C., Wang, N., Tan, H., Guo, W., Chen, F., Zhong, Z., et al. (2020) Direct Inhibition of the TLR4/MyD88 Pathway by Geniposide Suppresses Hif‐1α‐Independent VEGF Expression and Angiogenesis in Hepatocellular Carcinoma. British Journal of Pharmacology, 177, 3240-3257.
https://doi.org/10.1111/bph.15046
[29]  García-Díaz, J.A., Navarrete-Vázquez, G., García-Jiménez, S., Hidalgo-Figueroa, S., Almanza-Pérez, J.C., Alarcón-Aguilar, F.J., et al. (2016) Antidiabetic, Antihyperlipidemic and Anti-Inflammatory Effects of Tilianin in Streptozotocin-Nicotinamide Diabetic Rats. Biomedicine & Pharmacotherapy, 83, 667-675.
https://doi.org/10.1016/j.biopha.2016.07.023
[30]  Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., et al. (2019) Hesperidin: A Therapeutic Agent for Obesity. Drug Design, Development and Therapy, 13, 3855-3866.
https://doi.org/10.2147/dddt.s227499
[31]  Na, L., Zhang, Q., Jiang, S., Du, S., Zhang, W., Li, Y., et al. (2015) Mangiferin Supplementation Improves Serum Lipid Profiles in Overweight Patients with Hyperlipidemia: A Double-Blind Randomized Controlled Trial. Scientific Reports, 5, Article No. 10344.
https://doi.org/10.1038/srep10344
[32]  Hou, M., Man, M., Man, W., Zhu, W., Hupe, M., Park, K., et al. (2012) Topical Hesperidin Improves Epidermal Permeability Barrier Function and Epidermal Differentiation in Normal Murine Skin. Experimental Dermatology, 21, 337-340.
https://doi.org/10.1111/j.1600-0625.2012.01455.x
[33]  Kim, B., Lee, J., Lee, H., Nam, K., Park, J., Lee, S.M., et al. (2013) Hesperidin Suppresses Melanosome Transport by Blocking the Interaction of Rab27A-Melanophilin. Biomolecules and Therapeutics, 21, 343-348.
https://doi.org/10.4062/biomolther.2013.032
[34]  Lim, Y., Lee, E.H., Kang, T.H., Ha, S.K., Oh, M.S., Kim, S.M., et al. (2009) Inhibitory Effects of Arbutin on Melanin Biosynthesis of α-Melanocyte Stimulating Hormone-Induced Hyperpigmentation in Cultured Brownish Guinea Pig Skin Tissues. Archives of Pharmacal Research, 32, 367-373.
https://doi.org/10.1007/s12272-009-1309-8
[35]  Kwon, K.J., Bae, S., Kim, K., An, I.S., Ahn, K.J., An, S., et al. (2014) Asiaticoside, a component of Centella asiatica, Inhibits Melanogenesis in B16F10 Mouse Melanoma. Molecular Medicine Reports, 10, 503-507.
https://doi.org/10.3892/mmr.2014.2159
[36]  Wang, X., Xing, G., Hong, B., Li, X., Zou, Y., Zhang, X., et al. (2014) Gastrodin Prevents Motor Deficits and Oxidative Stress in the MPTP Mouse Model of Parkinson's Disease: Involvement of ERK1/2-Nrf2 Signaling Pathway. Life Sciences, 114, 77-85.
https://doi.org/10.1016/j.lfs.2014.08.004
[37]  Koneru, M., Sahu, B.D., Gudem, S., Kuncha, M., Ravuri, H.G., Kumar, J.M., et al. (2017) Polydatin Alleviates Alcohol-Induced Acute Liver Injury in Mice: Relevance of Matrix Metalloproteinases (MMPs) and Hepatic Antioxidants. Phytomedicine, 27, 23-32.
https://doi.org/10.1016/j.phymed.2017.01.013
[38]  Wang, Y., Wang, Y., Liu, Y., Cao, J., Yang, M., Wang, Y., et al. (2022) 6’-O-Caffeoylarbutin from Que Zui Tea Ameliorates Acetaminophen-Induced Liver Injuryviaenhancing Antioxidant Ability and Regulating the PI3K Signaling Pathway. Food & Function, 13, 5299-5316.
https://doi.org/10.1039/d2fo00507g
[39]  Hu, Z.M., Liu, S.Y., Yang, H.Y., et al. (2021) [Research Progress of Liposome Drug Delivery System in Stomatology]. Chinese Journal of Stomatology, 56, 294-300.
[40]  Liang, T., Guan, R., Quan, Z., Tao, Q., Liu, Z. and Hu, Q. (2019) Cyanidin-3-O-Glucoside Liposome: Preparation via a Green Method and Antioxidant Activity in GES-1 Cells. Food Research International, 125, Article ID: 108648.
https://doi.org/10.1016/j.foodres.2019.108648
[41]  Zhao, L., Wei, Y., Guo, J., Zheng, X., Wu, J., Zhou, Y., et al. (2014) Preparation, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposomes. International Journal of Nanomedicine, 9, 3623-3630.
https://doi.org/10.2147/ijn.s66312
[42]  Chen, M., Liu, X., Qu, X., Guo, R., Zhang, L., Kong, L., et al. (2023) ApoE-Modified Liposomes Encapsulating Resveratrol and Salidroside Alleviate Manifestations of Alzheimer’s Disease in APP/PS-1 Mice. Drug Development and Industrial Pharmacy, 49, 559-571.
https://doi.org/10.1080/03639045.2023.2252062
[43]  曹丽华. 同轴电喷-去模板法制备核壳纳米颗粒及其在药物传递领域的应用[D]: [博士学位论文]. 杭州: 浙江大学, 2014.
[44]  Pandey, P., Rahman, M., Bhatt, P.C., Beg, S., Paul, B., Hafeez, A., et al. (2018) Implication of Nano-Antioxidant Therapy for Treatment of Hepatocellular Carcinoma Using PLGA Nanoparticles of Rutin. Nanomedicine, 13, 849-870.
https://doi.org/10.2217/nnm-2017-0306
[45]  Palei, N.N. and Surendran, V. (2022) Formulation and Characterization of Rutin Loaded Chitosan-Alginate Nanoparticles: Antidiabetic and Cytotoxicity Studies. Current Drug Delivery, 19, 379-394.
https://doi.org/10.2174/1567201818666211005090656
[46]  Jin, S.Y., Han, J., Jin, S.X., Lv, Q.Y., et al. (2014) Characterization and Evaluation in Vivo of Baicalin-Nanocrystals Prepared by an Ultrasonic-Homogenization-Fluid Bed Drying Method. Chinese Journal of Natural Medicines, 12, 71-80.
https://doi.org/10.1016/s1875-5364(14)60012-1
[47]  Pleguezuelos-Villa, M., Nácher, A., Hernández, M.J., Ofelia Vila Buso, M.A., Ruiz Sauri, A. and Díez-Sales, O. (2019) Mangiferin Nanoemulsions in Treatment of Inflammatory Disorders and Skin Regeneration. International Journal of Pharmaceutics, 564, 299-307.
https://doi.org/10.1016/j.ijpharm.2019.04.056
[48]  Huang, H., Belwal, T., Aalim, H., Li, L., Lin, X., Liu, S., et al. (2019) Protein-Polysaccharide Complex Coated W/O/W Emulsion as Secondary Microcapsule for Hydrophilic Arbutin and Hydrophobic Coumaric Acid. Food Chemistry, 300, Article ID: 125171.
https://doi.org/10.1016/j.foodchem.2019.125171
[49]  Liang, C., Qi, D., Zhang, L., Lu, P. and Liu, Z. (2021) Preparation and Evaluation of a Water-In-Oil Nanoemulsion Drug Delivery System Loaded with Salidroside. Chinese Journal of Natural Medicines, 19, 231-240.
https://doi.org/10.1016/s1875-5364(21)60025-0
[50]  Mishra, D.K., Shandilya, R. and Mishra, P.K. (2018) Lipid Based Nanocarriers: A Translational Perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14, 2023-2050.
https://doi.org/10.1016/j.nano.2018.05.021
[51]  史亚军, 吴品江, 许润春, 等. 黄芩苷磷脂复合物基本性质研究[J]. 中草药, 2012, 43(1): 78-82.
[52]  李楠, 冯玲玲, 蒋学华, 等. 黄芩苷磷脂复合物大鼠在体胃肠道吸收研究[J]. 中国药学杂志, 2016, 51(12): 994-998.
[53]  李楠, 冯玲玲, 蒋学华, 等. 黄芩苷磷脂复合物口服给药大鼠体内动力学研究[J]. 时珍国医国药, 2017, 28(11): 2568-2570.
[54]  李楠, 叶英杰, 杨明, 等. 黄芩苷磷脂复合物单侧鼻腔给药脑靶向性研究[J]. 中国药学杂志, 2012, 47(4): 283-286.
[55]  杨爱霞, 张力凡, 鲁力. 黄芩苷磷脂复合物固体分散体的药动学研究[J]. 中国药师, 2020, 23(7): 1331-1334, 1362.
[56]  刘昌顺, 龙晓英, 梁浩明, 等. 黄芩苷及其磷脂复合物与自微乳在大鼠体内的药动学比较性研究[J]. 中国新药杂志, 2015, 24(2): 195-198, 211.
[57]  Kurkov, S.V. and Loftsson, T. (2013) Cyclodextrins. International Journal of Pharmaceutics, 453, 167-180.
https://doi.org/10.1016/j.ijpharm.2012.06.055
[58]  Fenyvesi, F., Nguyen, T.L.P., Haimhoffer, Á., Rusznyák, Á., Vasvári, G., Bácskay, I., et al. (2020) Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. Materials, 13, Article 3618.
https://doi.org/10.3390/ma13163618
[59]  Gratieri, T., Pinho, L.A.G., Oliveira, M.A., Sa-Barreto, L.L., Marreto, R.N., Silva, I.C., et al. (2020) Hydroxypropyl-β-Cyclodextrin-Complexed Naringenin by Solvent Change Precipitation for Improving Anti-Inflammatory Effect in Vivo. Carbohydrate Polymers, 231, Article ID: 115769.
https://doi.org/10.1016/j.carbpol.2019.115769
[60]  Prodea, A., Mioc, A., Banciu, C., Trandafirescu, C., Milan, A., Racoviceanu, R., et al. (2022) The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. International Journal of Molecular Sciences, 23, Article 736.
https://doi.org/10.3390/ijms23020736
[61]  Căta, A., Ienaşcu, I.M.C., Frum, A., Ursu, D., Svera, P., Orha, C., et al. (2024) Preparation and Characterization of a Novel Salicin-Cyclodextrin Complex. Pharmaceutics, 16, Article 369.
https://doi.org/10.3390/pharmaceutics16030369
[62]  Chang, C., Song, M., Ma, M., Song, J., Cao, F. and Qin, Q. (2023) Preparation, Characterization and Molecular Dynamics Simulation of Rutin-Cyclodextrin Inclusion Complexes. Molecules, 28, Article 955.
https://doi.org/10.3390/molecules28030955
[63]  Başaran, E., Öztürk, A.A., Şenel, B., Demirel, M. and Sarica, Ş. (2022) Quercetin, Rutin and Quercetin-Rutin Incorporated Hydroxypropyl β-Cyclodextrin Inclusion Complexes. European Journal of Pharmaceutical Sciences, 172, Article ID: 106153.
https://doi.org/10.1016/j.ejps.2022.106153

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133