全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泡沫混凝土复合墙板抗冻性研究综述
A Review of the Frost Resistance of Foam Concrete Composite Wallboards

DOI: 10.12677/ms.2025.152038, PP. 326-334

Keywords: 夹芯复合墙板,抗冻性能,泡沫混凝土
Sandwich Composite Wallboard
, Frost Resistance Performance, Foam Concrete

Full-Text   Cite this paper   Add to My Lib

Abstract:

泡沫混凝土(foam concrete, FC)与传统混凝土相比具备优良的保温隔热、隔音、耐火及抗震性能,同时显著降低了建筑自重,更契合现代建筑绿色发展理念。夹芯保温墙板在长期经历昼夜温差变化、冷热交替和冻融循环后会改变保温材料内部结构,使其粘结强度逐渐下降,导致保温层与结构层之间的粘结不牢固,从而引发空鼓和脱落等质量问题,因此对夹芯保温墙板进行抗冻性能的研究非常有必要。
Compared with traditional concrete, foam concrete (FC) has excellent thermal insulation, sound insulation, fire resistance and seismic resistance, and at the same time significantly reduces the weight of the building, which is more in line with the green development concept of modern buildings. After experiencing the temperature difference between day and night, alternating between cold and hot and freeze-thaw cycles for a long time, the internal structure of the insulation material will be changed, and the bonding strength will gradually decrease, resulting in the infirm bond between the insulation layer and the structural layer, which will cause quality problems such as hollowing and falling off, so it is very necessary to study the frost resistance of the sandwich insulation wallboard.

References

[1]  赵东来, 胡春雨, 柏德胜, 等. 我国建筑节能技术现状与发展趋势[J]. 建筑节能, 2015, 43(3): 116-121.
[2]  郭娟利. 严寒地区保障房建筑工业化围护部品集成性能研究[D]: [博士学位论文]. 天津: 天津大学, 2014.
[3]  范丽龙. 基于高性能泡沫混凝土的复合自保温砌块的实验研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2012.
[4]  Tawil, H., Tan, C.G., Sulong, N.H.R., Nazri, F.M., Sherif, M.M. and El-Shafie, A. (2022) Mechanical and Thermal Properties of Composite Precast Concrete Sandwich Panels: A Review. Buildings, 12, Article No. 1429.
https://doi.org/10.3390/buildings12091429
[5]  熊峰, 边钰, 刘烨, 等. 预制混凝土夹心保温墙板结构性能研究综述[J]. 建筑结构, 2022, 52(23): 26-34, 125.
[6]  刘若南. 基于强度的预制混凝土夹芯保温墙板连接件设计研究[D]: [博士学位论文]. 武汉: 武汉理工大学, 2014.
[7]  杨佳林, 薛伟辰. 预制夹芯保温墙体FRP连接件应用进展[J]. 低温建筑技术, 2012, 34(8): 139-142.
[8]  白正仙, 高佳伟, 刘学春, 等. 夹芯墙体玻璃钢连接件连接性能研究[J]. 工业建筑, 2020, 50(2): 169-176, 183.
[9]  Liew, J.Y.R. and Sohel, K.M.A. (2010) Structural Performance of Steel-Concrete-Steel Sandwich Composite Structures. Advances in Structural Engineering, 13, 453-470.
https://doi.org/10.1260/1369-4332.13.3.453
[10]  McCall, C.W. (1985) Thermal Properties of Sandwich Panels. International Concrete Abstracts Portal, 7, 35-41.
[11]  Mosallam, A., Allam, K. and Salama, M. (2019) Analytical and Numerical Modeling of RC Beam-Column Joints Retrofitted with FRP Laminates and Hybrid Composite Connectors. Composite Structures, 214, 486-503.
https://doi.org/10.1016/j.compstruct.2019.02.032
[12]  He, Z., Pan, P., Ren, J. and Wang, H. (2020) Experimental and Numerical Investigation of Novel I-Shaped GFRP Connectors for Insulated Precast Concrete Sandwich Wall Panels. Journal of Composites for Construction, 24, Article ID: 04020040.
https://doi.org/10.1061/(asce)cc.1943-5614.0001053
[13]  Huang, J. and Dai, J. (2019) Direct Shear Tests of Glass Fiber Reinforced Polymer Connectors for Use in Precast Concrete Sandwich Panels. Composite Structures, 207, 136-147.
https://doi.org/10.1016/j.compstruct.2018.09.017
[14]  Kim, J. and You, Y. (2015) Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types. Materials, 8, 899-913.
https://doi.org/10.3390/ma8030899
[15]  Cox, B., Syndergaard, P., Al-Rubaye, S., Pozo-Lora, F.F., Tawadrous, R. and Maguire, M. (2019) Lumped GFRP Star Connector System for Partial Composite Action in Insulated Precast Concrete Sandwich Panels. Composite Structures, 229, Article ID: 111465.
https://doi.org/10.1016/j.compstruct.2019.111465
[16]  刘卉. 预制混凝土夹芯保温外挂墙板研究[D]: [硕士学位论文]. 南京: 东南大学, 2016.
[17]  Woltman, G.D., Tomlinson, D.G. and Fam, A. (2011) A Comparative Study of Various FRP Shear Connectors for Sandwich Concrete Walls. In: Ye, L.P., Feng, P. and Yue, Q.R., Eds., Advances in FRP Composites in Civil Engineering, Springer, 237-240.
https://doi.org/10.1007/978-3-642-17487-2_50
[18]  Choi, K., Choi, W., Feo, L., Jang, S. and Yun, H. (2015) In-Plane Shear Behavior of Insulated Precast Concrete Sandwich Panels Reinforced with Corrugated GFRP Shear Connectors. Composites Part B: Engineering, 79, 419-429.
https://doi.org/10.1016/j.compositesb.2015.04.056
[19]  Woltman, G., Tomlinson, D. and Fam, A. (2013) Investigation of Various GFRP Shear Connectors for Insulated Precast Concrete Sandwich Wall Panels. Journal of Composites for Construction, 17, 711-721.
https://doi.org/10.1061/(asce)cc.1943-5614.0000373
[20]  Tomlinson, D. and Fam, A. (2014) Experimental Investigation of Precast Concrete Insulated Sandwich Panels with Glass Fiber-Reinforced Polymer Shear Connectors. ACI Structural Journal, 111, 595-605.
https://doi.org/10.14359/51686621
[21]  Gong, J., Zhang, W. and Zhou, Z. (2021) Foam Concrete Pore Structure Effect on Drying Shrinkage and Frost Resistance. Journal of Testing and Evaluation, 49, 3431-3443.
https://doi.org/10.1520/jte20190550
[22]  高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838.
[23]  郭雷, 关辉, 杨学春. 甲基硅烷类防水剂对泡沫混凝土抗冻性的影响[J]. 哈尔滨工程大学学报, 2018, 39(12): 2075-2079.
[24]  李崇智, 彭家蔓, 王会新, 等. 用于泡沫混凝土的磷酸镁水泥基胶凝材料研究[J]. 材料导报, 2023, 37(S2): 227-230.
[25]  Bumanis, G., Bajare, D., Korjakins, A. and Vaičiukynienė, D. (2022) Sulfate and Freeze-Thaw Resistance of Porous Geopolymer Based on Waste Clay and Aluminum Salt Slag. Minerals, 12, Article No. 1140.
https://doi.org/10.3390/min12091140
[26]  Liu, Q., Chen, H., Fang, S. and Luo, J. (2024) Effect of Mineral Powders on the Properties of Foam Concrete Prepared by Cationic and Anionic Surfactants as Foaming Agents. Materials, 17, Article No. 606.
https://doi.org/10.3390/ma17030606
[27]  Sun, C., Zhu, Y., Guo, J., Zhang, Y. and Sun, G. (2018) Effects of Foaming Agent Type on the Workability, Drying Shrinkage, Frost Resistance and Pore Distribution of Foamed Concrete. Construction and Building Materials, 186, 833-839.
https://doi.org/10.1016/j.conbuildmat.2018.08.019
[28]  Li, S., Li, H., Yan, C., Ding, Y., Zhang, X. and Zhao, J. (2022) Investigating the Mechanical and Durability Characteristics of Fly Ash Foam Concrete. Materials, 15, Article No. 6077.
https://doi.org/10.3390/ma15176077
[29]  Tebbal, N. and Rahmouni, Z.E.A. (2019) Valorization of Aluminum Waste on the Mechanical Performance of Mortar Subjected to Cycles of Freeze-Thaw. Procedia Computer Science, 158, 1114-1121.
https://doi.org/10.1016/j.procs.2019.09.234
[30]  Zhang, S., Qi, X., Guo, S., Zhang, L. and Ren, J. (2022) A Systematic Research on Foamed Concrete: The Effects of Foam Content, Fly Ash, Slag, Silica Fume and Water-to-Binder Ratio. Construction and Building Materials, 339, Article ID: 127683.
https://doi.org/10.1016/j.conbuildmat.2022.127683
[31]  Bayraktar, O.Y., Soylemez, H., Kaplan, G., Benli, A., Gencel, O. and Turkoglu, M. (2021) Effect of Cement Dosage and Waste Tire Rubber on the Mechanical, Transport and Abrasion Characteristics of Foam Concretes Subjected to H2SO4 and Freeze-Thaw. Construction and Building Materials, 302, Article ID: 124229.
https://doi.org/10.1016/j.conbuildmat.2021.124229
[32]  Gencel, O., Benli, A., Bayraktar, O.Y., Kaplan, G., Sutcu, M. and Elabade, W.A.T. (2021) Effect of Waste Marble Powder and Rice Husk Ash on the Microstructural, Physico-Mechanical and Transport Properties of Foam Concretes Exposed to High Temperatures and Freeze-Thaw Cycles. Construction and Building Materials, 291, Article ID: 123374.
https://doi.org/10.1016/j.conbuildmat.2021.123374
[33]  孙赛炜, 刘勇, 陈伟, 等. 偏高岭土对路基填料泡沫轻质土性能的影响研究[J]. 混凝土, 2020(1): 95-99.
[34]  Toubia, E.A., Emami, S. and Klosterman, D. (2017) Degradation Mechanisms of Balsa Wood and PVC Foam Sandwich Core Composites Due to Freeze/Thaw Exposure in Saline Solution. Journal of Sandwich Structures & Materials, 21, 990-1008.
https://doi.org/10.1177/1099636217706895
[35]  Sfarra, S., Tejedor, B., Perilli, S., Almeida, R.M.S.F. and Barreira, E. (2020) Evaluating the Freeze-Thaw Phenomenon in Sandwich-Structured Composites via Numerical Simulations and Infrared Thermography. Journal of Thermal Analysis and Calorimetry, 145, 3105-3123.
https://doi.org/10.1007/s10973-020-09985-1
[36]  Li, Y., Yin, S. and Feng, L. (2023) Experimental Investigation on Flexural Behavior of Prefabricated Sandwich Insulation Wall Panels with Textile Reinforced Engineered Cementitious Composites as the Wythes after Freeze-Thaw Cycles. Advances in Structural Engineering, 27, 415-431.
https://doi.org/10.1177/13694332231222342
[37]  程龙. 装配式发泡混凝土填充墙耐久性试验研究[D]: [硕士学位论文]. 南京: 东南大学, 2019.
[38]  殷明. 冻融循环对外墙保温板与结构层粘结性能的影响[D]: [硕士学位论文]. 西安: 西安工业大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133