|
数字认知的具身表征文献综述
|
Abstract:
数字认知的具身表征是近年来逐渐引起关注的研究主题,具身数量的观点在接续的研究中应运而生,是数字认知在具身视角的集中表现。本文从具身数量这个交叉视角出发,概述了其发展历程,并分别阐述了手指表征和非手指形式表征中具身数量的体现,接着从具身认知角度对数字空间表征进行解释。最后针对手指表征和非手指表征的具身数量研究提出了有关神经机制、研究技术、研究范式方面的展望。
The embodied representation of number cognition is a research theme that has gradually attracted attention in recent years, and the idea of embodied numerosity has emerged in successive studies as a concentrated manifestation of digital cognition from an embodied perspective. This paper starts from the cross perspective of embodied numerosity, outlines its developmental history, and describes the embodiment of embodied quantity in finger representations and non-finger form representations respectively, and then explains number spatial representations from the perspective of embodied cognition. Finally, an outlook regarding neural mechanisms, research techniques, and research paradigms is presented for the study of embodied numerosity in finger and non-finger representations.
[1] | 葛慧(2014). 身体运动对SNARC效应的影响. 硕士学位论文, 武汉: 华中师范大学. |
[2] | 胡艳蓉, 张丽, 陈敏(2014). 手指的感知、运动以及数量表征对数字认知的促进作用. 心理发展与教育, 30(3), 329-336. |
[3] | 宋晓蕾, 傅旭娜, 张俊婷, 游旭群(2017). 反应-效应相容性范式下不同数字表征方式和身体经验对数字认知加工的影响. 心理学报, 49(5), 602-610. |
[4] | 王礼申, 谢丽芳(2021). 具身认知研究评述. 韶关学院学报, 42(7), 83-87. |
[5] | 朱梦璐(2016). 手臂运动与对SNARC效应的影响. 硕士学位论文, 苏州: 苏州大学. |
[6] | Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking Boosts Your Performance in Making Additions and Subtractions. Frontiers in Psychology, 5, Article No. 1459. |
[7] | Badets, A., & Pesenti, M. (2010). Creating Number Semantics through Finger Movement Perception. Cognition, 115, 46-53. https://doi.org/10.1016/j.cognition.2009.11.007 |
[8] | Badets, A., Bouquet, C. A., Ric, F., & Pesenti, M. (2012). Number Generation Bias after Action Observation. Experimental Brain Research, 221, 43-49. https://doi.org/10.1007/s00221-012-3145-1 |
[9] | Badets, A., Pesenti, M., & Olivier, E. (2010). Response-Effect Compatibility of Finger-Numeral Configurations in Arithmetical Context. Quarterly Journal of Experimental Psychology, 63, 16-22. https://doi.org/10.1080/17470210903134385 |
[10] | Belli, F., Felisatti, A., & Fischer, M. H. (2021). “Breathink”: Breathing Affects Production and Perception of Quantities. Experimental Brain Research, 239, 2489-2499. https://doi.org/10.1007/s00221-021-06147-z |
[11] | Cheng, X., Ge, H., Andoni, D., Ding, X., & Fan, Z. (2015). Composite Body Movements Modulate Numerical Cognition: Evidence from the Motion-Numerical Compatibility Effect. Frontiers in Psychology, 6, Article No. 1692. https://doi.org/10.3389/fpsyg.2015.01692 |
[12] | Corballis, M. C. (2009). Language as Gesture. Human Movement Science, 28, 556-565. https://doi.org/10.1016/j.humov.2009.07.003 |
[13] | de Carvalho Souza, A. M., Barrocas, R., Fischer, M. H., Arnaud, E., Moeller, K., & Rennó-Costa, C. (2023). Combining Virtual Reality and Tactile Stimulation to Investigate Embodied Finger-Based Numerical Representations. Frontiers in Psychology, 14, Article ID: 1119561. https://doi.org/10.3389/fpsyg.2023.1119561 |
[14] | Dehaene, S., Bossini, S., & Giraux, P. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology: General, 122, 371-396. https://doi.org/10.1037/0096-3445.122.3.371 |
[15] | Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J. et al. (1996). Cerebral Activations during Number Multiplication and Comparison: A PET Study. Neuropsychologia, 34, 1097-1106. https://doi.org/10.1016/0028-3932(96)00027-9 |
[16] | Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H. (2010). Embodied Numerosity: Implicit Hand-Based Representations Influence Symbolic Number Processing across Cultures. Cognition, 116, 251-266. https://doi.org/10.1016/j.cognition.2010.05.007 |
[17] | Fischer, M. H., & Brugger, P. (2011). When Digits Help Digits: Spatial? Numerical Associations Point to Finger Counting as Prime Example of Embodied Cognition. Frontiers in Psychology, 2, Article No. 260. https://doi.org/10.3389/fpsyg.2011.00260 |
[18] | Gallese, V., & Lakoff, G. (2005). The Brain’s Concepts: The Role of the Sensory-Motor System in Conceptual Knowledge. Cognitive Neuropsychology, 22, 455-479. https://doi.org/10.1080/02643290442000310 |
[19] | Galton, F. (1880). Visualised Numerals. Nature, 21, 494-495. https://doi.org/10.1038/021494e0 |
[20] | Gentilucci, M., & Corballis, M. (2006). From Manual Gesture to Speech: A Gradual Transition. Neuroscience & Biobehavioral Reviews, 30, 949-960. https://doi.org/10.1016/j.neubiorev.2006.02.004 |
[21] | Gentilucci, M., Benuzzi, F., Gangitano, M., & Grimaldi, S. (2001). Grasp with Hand and Mouth: A Kinematic Study on Healthy Subjects. Journal of Neurophysiology, 86, 1685-1699. https://doi.org/10.1152/jn.2001.86.4.1685 |
[22] | Gerstmann, J. (1940). Syndrome of Finger Agnosia, Disorientation for Right and Left, Agraphia and Acalculia: Local Diagnostic Value. Archives of Neurology & Psychiatry, 44, 398-408. https://doi.org/10.1001/archneurpsyc.1940.02280080158009 |
[23] | Götz, F. J., Böckler, A., & Eder, A. B. (2020). Low Numbers from a Low Head? Effects of Observed Head Orientation on Numerical Cognition. Psychological Research, 84, 2361-2374. https://doi.org/10.1007/s00426-019-01221-2 |
[24] | Grade, S., Badets, A., & Pesenti, M. (2017). Influence of Finger and Mouth Action Observation on Random Number Generation: An Instance of Embodied Cognition for Abstract Concepts. Psychological Research, 81, 538-548. https://doi.org/10.1007/s00426-016-0760-7 |
[25] | Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition. Journal of Experimental Psychology: Human Perception and Performance, 38, 1416-1427. https://doi.org/10.1037/a0026706 |
[26] | Hartmann, M., Martarelli, C. S., Mast, F. W., & Stocker, K. (2014). Eye Movements during Mental Time Travel Follow a Diagonal Line. Consciousness and Cognition, 30, 201-209. https://doi.org/10.1016/j.concog.2014.09.007 |
[27] | Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head Turns Bias the Brain’s Internal Random Generator. Current Biology, 18, R60-R62. https://doi.org/10.1016/j.cub.2007.11.015 |
[28] | Luca, S. D., & Pesenti, M. (2008). Masked Priming Effect with Canonical Finger Numeral Configurations. Experimental Brain Research, 185, 27-39. |
[29] | Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U. et al. (2012). Learning and Development of Embodied Numerosity. Cognitive Processing, 13, 271-274. https://doi.org/10.1007/s10339-012-0457-9 |
[30] | Myachykov, A., Chapman, A. J., Beal, J., & Scheepers, C. (2020). Random Word Generation Reveals Spatial Encoding of Syllabic Word Length. British Journal of Psychology, 111, 357-368. https://doi.org/10.1111/bjop.12399 |
[31] | Myachykov, A., Scheepers, C., Fischer, M. H., & Kessler, K. (2014). TEST: A Tropic, Embodied, and Situated Theory of Cognition. Topics in Cognitive Science, 6, 442-460. https://doi.org/10.1111/tops.12024 |
[32] | Pesenti, M., Thioux, M., Seron, X., & Volder, A. D. (2000). Neuroanatomical Substrates of Arabic Number Processing, Numerical Comparison, and Simple Addition: A PET Study. Journal of Cognitive Neuroscience, 12, 461-479. https://doi.org/10.1162/089892900562273 |
[33] | Prete, G., & Tommasi, L. (2020). Exploring the Interactions among SNARC Effect, Finger Counting Direction and Embodied Cognition. PeerJ, 8, e9155. https://doi.org/10.7717/peerj.9155 |
[34] | Ranzini, M., Scarpazza, C., Radua, J., Cutini, S., Semenza, C., & Zorzi, M. (2022). A Common Neural Substrate for Number Comparison, Hand Reaching and Grasping: A SDM-PSI Meta-Analysis of Neuroimaging Studies. Cortex, 148, 31-67. https://doi.org/10.1016/j.cortex.2021.12.007 |
[35] | Rashidi-Ranjbar, N., Goudarzvand, M., Jahangiri, S., Brugger, P., & Loetscher, T. (2014). No Horizontal Numerical Mapping in a Culture with Mixed-Reading Habits. Frontiers in Human Neuroscience, 8, Article No. 72. https://doi.org/10.3389/fnhum.2014.00072 |
[36] | Rueckert, L., Lange, N., Partiot, A., Appollonio, I., Litvan, I., Le Bihan, D. et al. (1996). Visualizing Cortical Activation during Mental Calculation with Functional MRI. NeuroImage, 3, 97-103. https://doi.org/10.1006/nimg.1996.0011 |
[37] | Sabaghypour, S., Moghaddam, H. S., Farkhondeh Tale Navi, F., Nazari, M. A., & Soltanlou, M. (2023). Do Numbers Make Us Handy? Behavioral and Electrophysiological Evidence for Number-Hand Congruency Effect. Acta Psychologica, 233, Article ID: 103841. https://doi.org/10.1016/j.actpsy.2023.103841 |
[38] | Sosson, C., Georges, C., Guillaume, M., Schuller, A., & Schiltz, C. (2018). Developmental Changes in the Effect of Active Left and Right Head Rotation on Random Number Generation. Frontiers in Psychology, 9, Article No. 236. https://doi.org/10.3389/fpsyg.2018.00236 |
[39] | Soylu, F., Rivera, B., Anchan, M., & Shannon, N. (2019). ERP Differences in Processing Canonical and Noncanonical Finger-numeral Configurations. Neuroscience Letters, 705, 74-79. https://doi.org/10.1016/j.neulet.2019.04.032 |
[40] | Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You Can Count on the Motor Cortex: Finger Counting Habits Modulate Motor Cortex Activation Evoked by Numbers. NeuroImage, 59, 3139-3148. https://doi.org/10.1016/j.neuroimage.2011.11.037 |
[41] | van den Berg, F. C. G., de Weerd, P., & Jonkman, L. M. (2021). Electrophysiological Evidence for Internalized Representations of Canonical Finger-Number Gestures and Their Facilitating Effects on Adults’ Math Verification Performance. Scientific Reports, 11, Article No. 11776. https://doi.org/10.1038/s41598-021-91303-2 |
[42] | Walsh, V. (2003). A Theory of Magnitude: Common Cortical Metrics of Time, Space and Quantity. Trends in Cognitive Sciences, 7, 483-488. https://doi.org/10.1016/j.tics.2003.09.002 |