全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于同态加密的室内指纹定位隐私保护方案
Privacy Preserving Scheme of Indoor Fingerprinting Locatization Based on Homomorphic Encryption

DOI: 10.12677/sea.2025.141008, PP. 73-85

Keywords: WiFi指纹定位,隐私保护,Kumar-Hassebrook距离,半同态加密
WiFi Fingerprint Positioning
, Privacy Protection, Kumar-Hassebrook Distance, Semi Homomorphic Encryption

Full-Text   Cite this paper   Add to My Lib

Abstract:

在室内定位服务中,如何保护用户及位置服务提供商的隐私安全和提高定位实时性一直是一个具有挑战性的问题。已有的方式大都采用欧氏距离结合半同态加密算法来完成,存在定位实时性不高、双方计算开销大等问题,基于此本文提出一种结合Kumar-Hassebrook距离、半同态加密算法及其安全点积性质的定位方案,在提高定位实时性的同时,能实现对用户位置信息和服务商指纹及位置数据隐私的保护。方案采取KH距离来匹配定位用户与指纹库中指纹数据的相似度,得到最近的K个最近邻参考点;在最近邻匹配中引入了半同态加密算法,保护用户和服务商的指纹数据隐私;同时,利用其安全点积性质实现了对服务商的指纹库坐标数据的隐私保护。为降低时间开销,引入了分簇聚类和模糊簇匹配,在提高定位实时性的同时可模糊服务器端对用户所在真实的簇的判断。从理论上对所提方案的安全性,时间开销及定位性能进行了分析,并在公共数据集中进行了性能评估。与同类加密算法比较,在不降低定位性能及安全性的前提下,该方案进一步地降低了时间开销。
How to protect the privacy security of users and location service providers and improve the real-time location performance has always been a challenging problem in indoor location services. Based on this, this paper proposes a solution that combines Kumar-Hassebrook distance, semi-homomorphic encryption algorithm and its security point product properties to protect the location and fingerprint data privacy of users and service providers and improve the real-time performance of positioning. The KH distance is used to match the similarity between the positioning user and the fingerprint data in the fingerprint database, and the nearest K nearest neighbor reference points are obtained. A semi-homomorphic encryption algorithm is introduced in Nearest Neighbor Matching to protect the privacy of fingerprint data of users and service providers. At the same time, the privacy protection of the fingerprint database coordinate data of the service provider is realized by using its secure dot product nature. In order to reduce the time overhead, clustering and fuzzy cluster matching are introduced, which can improve the real-time positioning and blur the judgment of the real cluster where the user is located on the server. Theoretically, the security, time overhead and positioning performance of the proposed scheme are analyzed, and the performance evaluation is carried out in the public dataset. Compared with similar encryption algorithms, the proposed scheme further reduces the time overhead without reducing the positioning performance and security.

References

[1]  Li, S., Hedley, M., Bengston, K., Humphrey, D., Johnson, M. and Ni, W. (2019) Passive Localization of Standard Wifi Devices. IEEE Systems Journal, 13, 3929-3932.
https://doi.org/10.1109/jsyst.2019.2903278
[2]  Yang, X., Wu, Z. and Zhang, Q. (2022) Bluetooth Indoor Localization with Gaussian-Bernoulli Restricted Boltzmann Machine Plus Liquid State Machine. IEEE Transactions on Instrumentation and Measurement, 71, 1-8.
https://doi.org/10.1109/tim.2021.3135344
[3]  Ibnatta, Y., Khaldoun, M. and Sadik, M. (2022) Indoor Localization System Based on Mobile Access Point Model MAPM Using RSS with UWB-OFDM. IEEE Access, 10, 46043-46056.
https://doi.org/10.1109/access.2022.3168677
[4]  Lee, S., Kim, J. and Moon, N. (2019) Random Forest and Wifi Fingerprint-Based Indoor Location Recognition System Using Smart Watch. Human-Centric Computing and Information Sciences, 9, Article No. 6.
https://doi.org/10.1186/s13673-019-0168-7
[5]  Leitch, S.G., Ahmed, Q.Z., Abbas, W.B., Hafeez, M., Laziridis, P.I., Sureephong, P., et al. (2023) On Indoor Localization Using Wifi, BLE, UWB, and IMU Technologies. Sensors, 23, Article 8598.
https://doi.org/10.3390/s23208598
[6]  王慧强, 高凯旋, 吕宏武. 高精度室内定位研究评述及未来演进展望[J]. 通信学报, 2021, 42(7): 198-210.
[7]  Jiang, H., Zhao, P. and Wang, C. (2018) Roblop: Towards Robust Privacy Preserving against Location Dependent Attacks in Continuous LBS Queries. IEEE/ACM Transactions on Networking, 26, 1018-1032.
https://doi.org/10.1109/tnet.2018.2812851
[8]  Zhai, F., Liang, X., Qin, Y., Li, B., Shen, L. and Xie, J. (2024) Privacy-Preserving Method for Sensitive Partitions of Electricity Consumption Data Based on Hybrid Differential Privacy and K-Anonymity. Journal of Physics: Conference Series, 2806, Article 012010.
https://doi.org/10.1088/1742-6596/2806/1/012010
[9]  Yazdanjue, N., Yazdanjouei, H., Karimianghadim, R. and Gandomi, A.H. (2024) An Enhanced Discrete Particle Swarm Optimization for Structural K-Anonymity in Social Networks. Information Sciences, 670, Article 120631.
https://doi.org/10.1016/j.ins.2024.120631
[10]  张志武, 雷若兰, 乐燕芬. 移动对象室内定位中的隐私保护方案[J]. 数据采集与处理, 2024, 39(3): 761-774.
[11]  Kiarashi, Y., Saghafi, S., Das, B., Hegde, C., Madala, V.S.K., Nakum, A., et al. (2023) Graph Trilateration for Indoor Localization in Sparsely Distributed Edge Computing Devices in Complex Environments Using Bluetooth Technology. Sensors, 23, Article 9517.
https://doi.org/10.3390/s23239517
[12]  Xie, S., Yu, X., Guo, Z., Zhu, M. and Han, Y. (2023) Multi-Output Regression Indoor Localization Algorithm Based on Hybrid Grey Wolf Particle Swarm Optimization. Applied Sciences, 13, Article 12167.
https://doi.org/10.3390/app132212167
[13]  Li, H., Sun, L., Zhu, H., Lu, X. and Cheng, X. (2014). Achieving Privacy Preservation in Wifi Fingerprint-Based Localization. IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, 27 April-2 May 2014, 2337-2445.
https://doi.org/10.1109/infocom.2014.6848178
[14]  张应辉, 张思睿, 赵秋霞, 等. 基于Wi-Fi指纹且计算外包的室内定位隐私保护方案[J]. 通信学报, 2024, 45(2): 31-39.
[15]  Eshun, S.N. and Palmieri, P. (2024) A Cryptographic Protocol for Efficient Mutual Location Privacy through Outsourcing in Indoor Wifi Localization. IEEE Transactions on Information Forensics and Security, 19, 4086-4099.
https://doi.org/10.1109/tifs.2024.3372805
[16]  Jarvinen, K., Leppakoski, H., Lohan, E., Richter, P., Schneider, T., Tkachenko, O., et al. (2019) PILOT: Practical Privacy-Preserving Indoor Localization Using Outsourcing. 2019 IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, 17-19 June 2019, 448-463.
https://doi.org/10.1109/eurosp.2019.00040
[17]  Bundak, C.E.A., Abd Rahman, M.A., Abdul Karim, M.K. and Osman, N.H. (2022) Fuzzy Rank Cluster Top K Euclidean Distance and Triangle Based Algorithm for Magnetic Field Indoor Positioning System. Alexandria Engineering Journal, 61, 3645-3655.
https://doi.org/10.1016/j.aej.2021.08.073
[18]  Chen, J., Song, S., Gu, Y. and Zhang, S. (2022) A Multisensor Fusion Algorithm of Indoor Localization Using Derivative Euclidean Distance and the Weighted Extended Kalman Filter. Sensor Review, 42, 669-681.
https://doi.org/10.1108/sr-10-2021-0337
[19]  Damgård, I. and Jurik, M. (2001) A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Lecture Notes in Computer Science, Springer, 119-136.
https://doi.org/10.1007/3-540-44586-2_9
[20]  Toth, Z. and Tamas, J. (2016) Miskolc IIS Hybrid IPS: Dataset for Hybrid Indoor Positioning. 2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA), Kosice, 19-20 April 2016, 408-412.
https://doi.org/10.1109/radioelek.2016.7477348
[21]  GitHub (2022) MATLAB Class-Based Toolbox for Paillier Crypto System.
https://github.com/martin-kaluz/PaillierCrypto-matlab

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133