|
基于多源遥感融合下的准格尔旗植被变化研究
|
Abstract:
本研究基于谷歌地球引擎(Google Earth Engine, GEE)云平台,使用GF-SG多源遥感融合方法得到高时空分辨率的两波段增强植被指数(EVI),采用趋势检验、突变点分析、偏相关分析等方法,对2002~2022年准格尔旗的植被时空变化进行分析,探讨了植被覆盖的变化趋势及其影响因素。结果表明:(1) 2002~2022年,准格尔旗的平均EVI显著上升,EVI值于2016年产生突变,风沙区和平原区EVI值增幅显著;(2) 植被稳定性分析显示,大部分区域波动较小,生态环境持续改善;(3) 森林的EVI增长速度最快,草地EVI的增长最慢;(4) 不同坡向与海拔EVI值有明显差异,偏东坡EVI值高,偏西坡EVI值低,EVI值随海拔的上升而降低;(5) 气温、降水、蒸散对EVI正向影响明显,降水在季前1个月影响最为显著,气温则在季前3~5个月的中长期累积效应更为显著。研究结果为干旱半干旱地区植被变化及其驱动机制提供了重要参考。
This study is based on the Google Earth Engine (GEE) cloud platform and uses the GF-SG multi-source remote sensing fusion method to obtain a two-band enhanced vegetation index (EVI) with high temporal and spatial resolution. Using methods such as trend analysis, change-point detection, and partial correlation analysis, this study examines the spatiotemporal changes in vegetation in Jungar Banner from 2002 to 2022, exploring the trends in vegetation coverage and their influencing factors. The results show that: (1) the average EVI of Jungar Banner increased significantly from 2002 to 2022, and the EVI value changed suddenly in 2016. The EVI values in the sandy and plain areas increased significantly; (2) the vegetation stability analysis showed that most areas have small fluctuations, and the ecological environment continues to improve; (3) The EVI of forests has the fastest growth rate, and the EVI of grasslands has the slowest growth rate; (4) There are obvious differences in EVI values at different slopes and altitudes, with higher EVI values on the eastern slopes , the EVI value is low on the west slope, and the EVI value decreases with increasing altitude; (5) Temperature, precipitation, and evapotranspiration have a significant positive impact on EVI, with precipitation having the most significant impact in the first month of the season, and temperature having the most significant impact in the first three months of the season. The medium- to long-term cumulative effect of 3~5 months is more significant. The research results provide an important reference for vegetation changes and their driving mechanisms in arid and semi-arid areas.
[1] | 陈亚宁. 干旱区科学概论[M]. 北京: 科学出版社, 2021. |
[2] | 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119. |
[3] | 李艳菊, 丁建丽, 张钧泳, 等. 2001-2015年天山北坡植被覆盖对干旱的响应——基于土地利用/土地覆盖分析[J]. 生态学报, 2019, 39(17): 6206-6217. |
[4] | 杨思遥, 孟丹, 李小娟, 吴新玲. 华北地区2001-2014年植被变化对SPEI气象干旱指数多尺度的响应[J]. 生态学报, 2018, 38(3): 1028-1039. |
[5] | 李京忠, 辛振华, 谢潇, 薛冰, 任婉侠. 半干旱区植被覆盖时空变化特征及其对气候变化的响应: 以锡林郭勒盟为例[J]. 应用生态学报, 2024, 35(1): 80-86. |
[6] | Anderegg, W.R.L., Schwalm, C., Biondi, F., et al. (2015) Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science, 349, 528-532. https://doi.org/10.1126/science.aab1833 |
[7] | Braswell, B.H., Schimel, D.S., Linder, E., et al. (1997) The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability. Science, 278, 870-873. https://doi.org/10.1126/science.278.5339.870 |
[8] | Wu, D., Zhao, X., Liang, S., et al. (2015) Time‐Lag Effects of Global Vegetation Responses to Climate Change. Global Change Biology, 21, 3520-3531. https://doi.org/10.1111/gcb.12945 |
[9] | Gessner, U., Naeimi, V., Klein, I., et al. (2013) The Relationship between Precipitation Anomalies and Satellite-Derived Vegetation Activity in Central Asia. Global and Planetary Change, 110, 74-87. https://doi.org/10.1016/j.gloplacha.2012.09.007 |
[10] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[11] | 雷茜, 胡忠文, 王敬哲, 张英慧, 邬国锋. 1985-2015年中国不同生态系统NDVI时空变化及其对气候因子的响应[J]. 生态学报, 2023, 43(15): 6378-6391. |
[12] | Zani, D., Crowther, T.W., Mo, L., Renner, S.S. and Zohner, C.M. (2020) Increased Growing-Season Productivity Drives Earlier Autumn Leaf Senescence in Temperate Trees. Science, 370, 1066-1071. https://doi.org/10.1126/science.abd8911 |
[13] | 海慧敏. 内蒙古植被生长峰值物候及其对植被生产力的影响研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古师范大学, 2022. |
[14] | Xia, J., Niu, S., Ciais, P., et al. (2015) Joint Control of Terrestrial Gross Primary Productivity by Plant Phenology and Physiology. Proceedings of the National Academy of Sciences, 112, 2788-2793. https://doi.org/10.1073/pnas.1413090112 |
[15] | 张瑞欣, 李付全, 周玉科, 等. 中国东北植被生长峰值时空变化及可持续性分析[J]. 测绘与空间地理信息, 2023, 46(5): 25-28. |
[16] | 王华, 周玉科, 王笑影, 等. 东北植被生长峰值特征的变化及对气候和物候的响应[J]. 遥感技术与应用, 2021, 36(2): 441-452. |
[17] | 安琪尔, 包刚, 元志辉, 等. 河套灌区农田植被物候和NDVI峰值对气候变化的响应[J]. 灌溉排水学报, 2024, 43(6): 86-92. |
[18] | 准格尔旗人民政府[EB/OL]. https://www.zge.gov.cn/wxzge/jyzge/zqgk/index_45338.html, 2025-01-10. |
[19] | 王嘉元, 秦富仓, 杨振奇, 等. 基于GIS地形分析的内蒙古准格尔旗生态区划研究[J]. 内蒙古林业科技, 2020, 46(3): 38-42. |
[20] | 冯俊辰, 董昊, 韩鹏, 等. 基于MODIS-EVI2与集成学习的森林火烧迹地面积预测[J]. 遥感技术与应用, 2024, 39(5): 1261-1270. |
[21] | Chen, J., Jönsson, P., Tamura, M., et al. (2004) A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky-Golay Filter. Remote Sensing of Environment, 91, 332-344. https://doi.org/10.1016/j.rse.2004.03.014 |
[22] | 孔锋. 1961-2018年中国极端冷暖事件变化及其空间差异特征[J]. 水利水电技术, 2020, 51(9): 34-44. |
[23] | 胡尔查, 王晓江, 铁牛, 等. 内蒙古大青山国家级自然保护区植被归一化指数时空变化及其与环境因子的关系[J]. 生态学报, 2022, 42(14): 5945-5955. |
[24] | Piao, S., Fang, J., Zhou, L., et al. (2006) Variations in Satellite-Derived Phenology in China’s Temperate Vegetation. Global Change Biology, 12, 672-685. |
[25] | 谢绮丽, 杨鑫, 郝利娜. 2001-2020年三江源区植被覆盖时空变化特征及其影响因素[J]. 水土保持通报, 2022, 42(5): 202-212. |
[26] | Berdimbetov, T., Ilyas, S., Ma, Z.G., et al. (2021) Climatic Change and Human Activities Link to Vegetation Dynamics in the Aral Sea Basin Using NDVI. Earth Systems and Environment, 5, 303-318. https://doi.org/10.1007/s41748-021-00224-7 |
[27] | 安健吉. 退耕还林还草工程对陕北地区生态系统服务的影响研究[D]: [硕士学位论文]. 西安: 长安大学, 2024. |
[28] | Fang, Z., Ding, T.H., Chen, J.Y., et al. (2022) Impacts of Land Use/Land Cover Changes on Ecosystem Services in Ecologically Fragile Regions. Science of the Total Environment, 831, Article 154967. https://doi.org/10.1016/j.scitotenv.2022.154967 |