全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulation of the Attitude Control System on a CubeSat U1 Using Magneto-Torquers

DOI: 10.4236/aast.2025.101001, PP. 1-17

Keywords: Magneto-Torquer, Control, PD, Attitude, CubeSat

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, we simulate the proportional derivative (PD) control of the control system for the Attitude of the CubeSat U1 based on a set of 3 orthogonal magnetic torsion coils called Magneto-Torquer and analyze its functionality. The simulation of the PD control of the Attitude system is based on the Propat simulator programmed in MatLab, created by Dr. Valdemir Carrara. We obtain the data that will allow us to position the X face of the CubeSat U1, pointing towards Puebla city. The electromagnetic theory that allows us to generate the magnetic torque in the Magneto-Torquer is described as the variables that will be controlled in its application to control the CubeSat. We consider the radius of the Earth to be 6,371,000 meters. In particular, it is proposed to simulate with an orbit altitude equal to 300,000 meters with an eccentricity of 0.0002, with polar orbit, using a Magneto-Torquer to generate the movements necessary to locate the CubeSat, based on the simulation. For the simulation, the real conditions of outer space and the Earth’s magnetic field at the location of Puebla are considered, and the values for positioning the X face of the CubeSat towards this region are obtained. Confirm that simulation is a necessary and important tool for constructing systems used in Satellite technology, particularly in the Attitude system of a CubeSat. The development of aerospace technology has a fundamental tool in artificial satellites and nanosatellites, including CubeSats. This same tool is available for countries with limited economies to carry out aerospace projects by building their CubeSats. This work is important because it provides the basis for future work and even the start of a project that can be sent into outer space.

References

[1]  Lechuga, V.M. (2017) Implementación del Control de Actitud de un CubeSat mediante Ruedas de Reacción.
https://www.researchgate.net/publication/359045661_Implementacion_del_Control_de_Actitud_de_un_CubeSat_mediante_Ruedas_de_R[eaccion
[2]  Lechuga, V.M. (2023) Diseño de un Arreglo Reconfigurable de Ruedas de Reacción basado en la Banda de Möbius para el Control de Actitud de Satélites CubeSat.
https://www.researchgate.net/publication/370952991_Diseno_de_un_Arreglo_Reconfigurable_de_Ruedas_de_Reaccion_basado_en_la_Banda_de_Mobius_para_el_Control_de_Actitud_de_Satelites_CubeSat
[3]  Prado-Morales, J., Navarrete-Montesinos, M., Molina, J.P. and Hernández-Arias, H. (2019) Diseño e implementación de actuadores del subsistema de determinación y control de orientación de un satélite CubeSat 3U.
https://www.researchgate.net/publication/372855243_Diseno_e_implementacion_de_actuadores_del_subsistema_de_determinacion_y_control_de_orientacion_de_un_satelite_CubeSat_3U
[4]  Shan, S. and Westfall, A. (2019) Attitude Control System Design for CubeSats Configured with Exo-Brake Para Chute.
https://ntrs.nasa.gov/api/citations/20190001361/downloads/20190001361.pdf
[5]  Hermosa, D.A. (1999) Principios de Electricidad y Electrónica II. Marcombo, 50-62.
https://www.academia.edu/41549740/Principios_de_Electricidad_y_Electronica_I_Antonio_Hermosa_Donate
[6]  Landau, L.D. and Lifshitz, E.M. (1970) Física teórica. Mecánica. Reverte, 15-28.
https://www.reverte.com/libro/fisica-teorica-mecanica-vol-i_91625/
[7]  Marion, J.B. (2014) Dinámica clásica de las partículas y sistemas. Reverte, 409-455.
https://books.google.co.ve/books?id=MpblAXz_StkC&printsec=frontcover#v=onepage&q&f=false
[8]  Tipler, P.A. and Mosca, G. (2012) Física para la ciencia y la tecnología. Volumen 1A Mecánica. Reverte, 331-354.
https://www.academia.edu/45147942/F%C3%ADsica_Tipler_6a_Ed_Vol_1
[9]  Tipler, P.A. and Mosca, G. (2004) Física para la ciencia y la tecnología. Volumen 2 de Electricidad y magnetismo/Luz. Reverte, 887-903.
https://archive.org/details/fisica-para-la-ciencia-y-la-tecnologia-by-paul-a.-tipler-gene-mosca-vol-2-electr
[10]  Sidi, M.J. (1997) Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, 22-92.
https://www.google.com/search?q=Sidi%2C+M.+J.+(1997).+Spacecraft+Dynamics+and+Control%3A+A+Practical+Engineering+Approach.&oq=Sidi%2C+M.+J.+(1997).+Spacecraft+Dynamics+and+Control%3A+A+Practical+Engineering+Approach.+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTI2ODZqMGoxNagCCLACAQ&sourceid=chrome&ie=UTF-8
[11]  Desouky, M.A.A., Prabhu, K. and Abdelkhalik, O. (2018) On Spacecraft Magnetic Attitude Control. 2018 Space Flight Mechanics Meeting, Kissimmee, 8-12 January 2018, 4-6.
https://arc.aiaa.org/doi/10.2514/6.2018-0205
https://doi.org/10.2514/6.2018-0205
[12]  Williams, D.R. (2020) Earth Fact Sheet. 15/03/2021, de NASA Goddard Space Flight Center.
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
[13]  NewSpace (2016) Varilla Magnetorquer NCTR-M002. 12/01/2021, de CubeSatShop, 7-44.
https://www.cubesatshop.com/product/nctr-m002-magnetorquer-rod/
[14]  Munakata, R., Carnahan, J. and Pignatelli, D. (2014) CubeSat Design Specification. California Polytechnic State University, 9-15.
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf
[15]  Ogata, K. (2010) Ingeniería de control moderna. Pearson Education.
https://www.academia.edu/9814191/Ingenieria_de_Control_Moderna_Ogata_5ed
[16]  Carrara, V. (2015) An Open Source Satellite Attitude and Orbit Simulator Toolbox for Matlab. Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, Natal, 22-27 February 2015, 2-8.
https://www.researchgate.net/publication/274065310_An_Open_Source_Satellite_Attitude_and_Orbit_Simulator_Toolbox_for_Matlab

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133