全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正构烷烃:解锁古气候密码的关键钥匙
N-Alkanes: The Key to Unlocking the Ancient Climate Code

DOI: 10.12677/ije.2025.141011, PP. 83-99

Keywords: 正构烷烃,古气候研究,碳优势指数
N-Alkanes
, Paleoclimate Research, Carbon Preference Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文围绕正构烷烃在古气候研究中的关键作用展开。古气候研究对地球演变、气候预测及生态社会发展意义重大,正构烷烃因独特性质与广泛分布在其中占据关键地位。其化学结构稳定,碳链长度、丰度和同位素组成等特征与古气候要素密切相关。来源涵盖陆生植物、水生生物及地质作用,不同来源正构烷烃为古气候研究提供多元信息。通过碳、氢同位素分馏机制,与光合作用、生物代谢、水体蒸发等环节相连,反映古气候的温度、降水、大气CO2浓度等要素变化。在湖泊、海洋、泥炭沼泽等地质载体中,正构烷烃记录了区域气候的干湿冷暖、生态演替及人类活动影响,如呼伦贝尔沙地伊和沙日乌苏湖、中国西南杞麓湖等案例所示。常用指标包括碳优势指数、平均碳链长度和正构烷烃比值指标等,多指标综合运用可弥补单一指标局限,提升古气候重建准确性。在研究方法上,样品采集需兼顾时空代表性,预处理要去除杂质、富集目标物;仪器分析技术有气相色谱、气相色谱–质谱联用和稳定同位素分析技术等,各有优势。当前研究面临正构烷烃来源复杂、指标不确定、样品保存与污染等挑战,但未来技术创新如高精度分析和原位监测技术发展、多学科交叉融合,以及跨区域对比与综合研究趋势,将推动正构烷烃古气候研究深入,助力揭示地球气候变迁奥秘与应对气候变化。
This paper focuses on the crucial role of N-alkanes in paleoclimate research. Paleoclimate research is of great significance for understanding Earth’s evolution, predicting climate change, and promoting ecological and social development. N-alkanes play a key position in this field due to their unique properties and wide distribution. Their chemical structures are stable, and characteristics such as carbon chain length, abundance, and isotope composition are closely related to paleoclimate elements. The sources of n-alkanes include terrestrial plants, aquatic organisms, and geological processes, and different sources provide diverse information for paleoclimate research. Through carbon and hydrogen isotope fractionation mechanisms, which are linked to photosynthesis, biological metabolism, water evaporation, and other processes, they can reflect changes in paleoclimate elements such as temperature, precipitation, and atmospheric CO? concentration. In geological carriers such as lake sediments, marine sediments, and peat bogs, N-alkanes record the dry-wet and cold-warm changes of regional climate, ecological succession, and the impact of human activities, as demonstrated by cases such as Lake Yihesariwusu in the Hulun Buir Sandy Land and Lake Qilu in southwest China. Commonly used indicators include the carbon preference index, average chain length, and n-alkane ratio index. The comprehensive application of multiple indicators can overcome the limitations of a single indicator and improve the accuracy of paleoclimate reconstruction. In research methods, sample collection should consider both spatial and temporal representativeness, and sample pretreatment aims to remove impurities and enrich target compounds. Instrumental analysis techniques include gas chromatography, gas chromatography - mass spectrometry, and stable isotope analysis technology, each with its own advantages. Current

References

[1]  Zhang, H., Wang, X. and Yang, G. (2024) Source Identification of Sedimentary Organic Carbon in Coastal Wetlands of the Western Bohai Sea. Science of the Total Environment, 870, Article ID: 161800.
[2]  Cao, K., Zhou, A. and Wu, D. (2024) Natural and Anthropogenic Forcing of Ecological and Environmental Changes at Lake Qilu, SW China, since the Last Deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 655, Article ID: 112514.
[3]  林晓, 朱立平, 王君波, 等. 西藏纳木错表层沉积物中正构烷烃的来源与空间分布特征[J]. 湖泊科学, 2009, 21(5): 654-662.
[4]  冷程程, 赵成, 崔巧玉, 张灿, 孙晓双, 闫天龙, 赵艳. 大兴安岭阿尔山天池沉积物中正构烷烃记录揭示的全新世古气候变化[J]. 第四纪研究, 2021, 41(4): 976-985.
[5]  Sachse, D., et al. (2006) Hydrogen Isotope Composition of n-Alkanes in Terrestrial Ecosystems and Its Environmental Significance. Organic Geochemistry, 37, 1292-1309.
[6]  Makula, R. and Finnerty, W.R. (1968) Microbial Assimilation of Hydrocarbons I. Fatty Acids Derived from Normal Alkanes. Journal of Bacteriology, 95, 2102-2107.
https://doi.org/10.1128/jb.95.6.2102-2107.1968

[7]  Brittingham, A., Hren, M. and Hartman, G. (2016) Microbial Alteration of Normal Alkane δ13C and δD in Sedimentary Archives.
[8]  汪素风, 陈云, 伊海生, 唐闻强, 周羽漩, 崔荣龙, 伍新和, 白蓉, 杨芸. 西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义[J]. 沉积与特提斯地质, 2023, 43(3): 542-554.
[9]  凌媛, 郑绵平, 张永生, 等. 西藏湖泊正构脂肪酸分布特征及对古气候重建的启示[J]. 科技导报, 2020, 38(8): 77-86.
[10]  Ram, F., Bera, M.K. and Sarkar, A. (2022) An Optimized Accelerated Solvent Extraction and Purification Method for Enhanced Recovery of N-Alkanes (Notably Short-Chains) from Environmental Samples Using the Conventional Dichloromethane/Methanol Solvent. Organic Geochemistry, 165, Article ID: 104368.
https://doi.org/10.1016/j.orggeochem.2022.104368

[11]  何金先, 余永进, 吴应忠, 姚泾利, 张晓丽. 低纬度淡水湖沉积物中正构烷烃氢同位素组成特征及其有机质源和环境指示意义[J]. 地质学报, 2017, 91(8): 1894-1904.
[12]  Liu, H., Liu, Z., Zhao, C. and Liu, W. (2019) N-Alkyl Lipid Concentrations and Distributions in Aquatic Plants and Their Individual δD Variations. Science China Earth Sciences, 62, 1441-1452.
https://doi.org/10.1007/s11430-019-9370-8

[13]  He, D., Nemiah Ladd, S., Saunders, C.J., Mead, R.N. and Jaffé, R. (2020) Distribution of N-Alkanes and Their δ2H and δ13C Values in Typical Plants along a Terrestrial-Coastal-Oceanic Gradient. Geochimica et Cosmochimica Acta, 281, 31-52.
https://doi.org/10.1016/j.gca.2020.05.003

[14]  于赤灵, 彭平安, 朱信旭, 王秋玲, 肖中尧. 塔里木盆地寒武系干酪根催化加氢热解产物中正构烷烃的分布与碳同位素组成特征[J]. 地球化学, 2019, 48(5): 447-457.
[15]  熊永强, 耿安松, 盛国英, 等. 生排烃过程中正构烷烃单体碳同位素组成的变化特征及其研究意义[J]. 沉积学报, 2001(3): 469-473.
[16]  李凤, 刘亚娟, 王江涛, 等. 东海赤潮高发区沉积物柱状样中正构烷烃和脂肪醇的分布与来源[J]. 沉积学报, 2014, 32(5): 988-995.
[17]  张斌, 黄凌, 吴英, 等. 强烈气洗作用导致原油成分变化的定量计算: 以库车坳陷天然气藏为例[J]. 地学前缘, 2010, 17(4): 270-279.
[18]  Su, A.-G. (2004) Behavior of Chain Alkane Molecular Components in PVT Fractionation Experiment.
[19]  Weigl, J.W. and Calvin, M. (1948) An Isotope Effect in Photosynthesis. The Journal of Chemical Physics, 17, 210.
[20]  Tarakanov, I.G., Tovstyko, D.A., Lomakin, M.P., Shmakov, A.S., Sleptsov, N.N., Shmarev, A.N., et al. (2022) Effects of Light Spectral Quality on Photosynthetic Activity, Biomass Production, and Carbon Isotope Fractionation in Lettuce, Lactuca sativa L., Plants. Plants, 11, Article No. 441.
https://doi.org/10.3390/plants11030441

[21]  张广斌, 纪洋, 刘刚, 等. 稻田CH4传输的碳同位素分馏研究[J]. 中国科学(地球科学), 2014, 44(9): 2016-2021.
[22]  何平. 温室效应与植物光合作用——大气CO2浓度升高对植物光合机理影响的分析[J]. 中南林学院学报, 2001, 21(1): 1-4.
[23]  李明财, 罗天祥, 刘新圣, 等. 高山林线急尖长苞冷杉不同器官的稳定碳同位素组成分布特征[J]. 应用生态学报, 2007, 18(12): 2654-2660.
[24]  郭炀锐. 生物碳酸盐团簇同位素分馏研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2019.
[25]  董星彩, 王颜红, 李国琛, 等. 五味子稳定碳同位素分布特征及其与环境因子的关系[J]. 生态学杂志, 2010, 29(12): 2353-2357.
[26]  Hu, L., Li, Y., Xu, W., Zhang, Q., Zhang, L., Qi, X., et al. (2012) Improvement of the Photosynthetic Characteristics of Transgenic Wheat Plants by Transformation with the Maize C<sub>4</sub> Phosphoenolpyruvate Carboxylase Gene. Plant Breeding, 131, 385-391.
https://doi.org/10.1111/j.1439-0523.2012.01960.x
[27]  Messerschmid, T.F.E., Wehling, J., Bobon, N., Kahmen, A., Klak, C., Los, J.A., et al. (2021) Carbon Isotope Composition of Plant Photosynthetic Tissues Reflects a Crassulacean Acid Metabolism (CAM) Continuum in the Majority of CAM Lineages. Perspectives in Plant Ecology, Evolution and Systematics, 51, Article ID: 125619.
https://doi.org/10.1016/j.ppees.2021.125619

[28]  Hinshelwood, C.N., Williamson, A.T. and Wolfenden, J.H. (1934) The Reaction between Oxygen and the Heavier Isotope of Hydrogen. Nature, 133, 836-837.
https://doi.org/10.1038/133836c0
[29]  O’Connor, K.F., Berke, M.A. and Ziolkowski, L.A. (2020) Hydrogen Isotope Fractionation in Modern Plants along a Boreal-Tundra Transect in Alaska. Organic Geochemistry, 147, Article ID: 104064.
https://doi.org/10.1016/j.orggeochem.2020.104064
[30]  Liu, J. and An, Z. (2019) Variations in Hydrogen Isotopic Fractionation in Higher Plants and Sediments across Different Latitudes: Implications for Paleohydrological Reconstruction. Science of The Total Environment, 650, 470-478.
https://doi.org/10.1016/j.scitotenv.2018.09.047
[31]  Liu, H. and Liu, W. (2019) Hydrogen Isotope Fractionation Variations of N-Alkanes and Fatty Acids in Algae and Submerged Plants from Tibetan Plateau Lakes: Implications for Palaeoclimatic Reconstruction. Science of The Total Environment, 695, Article 133925.
https://doi.org/10.1016/j.scitotenv.2019.133925
[32]  Gonfiantini, R., Wassenaar, L.I., Araguas-Araguas, L. and Aggarwal, P.K. (2018) A Unified Craig-Gordon Isotope Model of Stable Hydrogen and Oxygen Isotope Fractionation during Fresh or Saltwater Evaporation. Geochimica et Cosmochimica Acta, 235, 224-236.
https://doi.org/10.1016/j.gca.2018.05.020

[33]  Xie, M., Sun, Q., Dong, H., Liu, S., Shang, W., Ling, Y., et al. (2020) n-Alkanes and Compound Carbon Isotope Records from Lake Yiheshariwusu in the Hulun Buir Sandy Land, Northeastern China. The Holocene, 30, 1451-1461.
https://doi.org/10.1177/0959683620932968

[34]  何尧启, 汪永进, 孔兴功, 等. 贵州董哥洞近1000a来高分辨率洞穴石笋δ18O记录[J]. 科学通报, 2005(11): 1114-1118.
[35]  张美良, 朱晓燕, 吴夏, 等. 云南华坪全新世大暖期百年尺度的季风气候的石笋记录[J]. 中国岩溶, 2019, 38(5): 804-814.
[36]  杜雅娟, 冯添, 康志海. 北方季风边缘区洞穴石笋δ18O序列预测初步研究[J]. 科学通报, 2013, 58(3): 254-259.
[37]  Routson, C.C., McKay, N.P., Kaufman, D.S., Erb, M.P., Goosse, H., Shuman, B.N., et al. (2019) Mid-latitude Net Precipitation Decreased with Arctic Warming during the Holocene. Nature, 568, 83-87.
https://doi.org/10.1038/s41586-019-1060-3
[38]  赵忠峰, 卢鸿, 李亢, 等. 水热条件下费托型合成反应氢同位素分馏研究[J]. 地球化学, 2023, 52(3): 271-280.
[39]  Booth, R.K., Brewer, S., Blaauw, M., Minckley, T.A. and Jackson, S.T. (2012) Decomposing the Mid‐Holocene tsuga Decline in Eastern North America. Ecology, 93, 1841-1852.
https://doi.org/10.1890/11-2062.1

[40]  方茸. 1999和2000年安徽省汛期旱涝分析及可能性预报[J]. 安徽农业科学, 2006(20): 5326-5327+5330.
[41]  Sánchez-Morales, J., Pardo-Igúzquiza, E. and Rodríguez-Tovar, F.J. (2023) Terrain Methods on Spectral Analysis for Paleoclimate Interpretations: A Novel Visualization Technique Using Python. Computers & Geosciences, 175, Article ID: 105342.
https://doi.org/10.1016/j.cageo.2023.105342

[42]  Herrera-Herrera, A.V., Leierer, L., Jambrina-Enríquez, M., Connolly, R. and Mallol, C. (2020) Evaluating Different Methods for Calculating the Carbon Preference Index (CPI): Implications for Palaeoecological and Archaeological Research. Organic Geochemistry, 146, Article 104056.
https://doi.org/10.1016/j.orggeochem.2020.104056
[43]  Wang, M.D., Zhang, W., Hou, J.Q. and Hou, J.Q. (2015) Is Average Chain Length of Plant Lipids a Potential Proxy for Vegetation, Environment and Climate Changes?
[44]  Gabov, D.N., Yakovleva, E.V., Vasilevich, R.S. and Gruzdev, I.V. (2022) Distribution of N-Alkanes in Hummocky Peatlands of the Extreme Northern Taiga of the European Northeast of Russia and Their Role in Paleoclimate Reconstruction. Eurasian Soil Science, 55, 879-894.
https://doi.org/10.1134/s1064229322070043

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133