|
基于iTransformer模型的碳排放权价格预测——以广东碳排放权为例
|
Abstract:
在世界主要经济体高度关注生态环境问题,我国坚持绿色发展战略,努力实现“双碳”目标的背景下,碳排放权市场成为了一项有效的减排政策工具,被多国所使用。本研究聚焦碳排放权的交易价格,从多角度分析价格影响因素,构建iTransformer机器学习模型来分析价格波动规律及走势,以广东省碳排放GDEA为实证案例进行价格预测,并使用SHAP分析展示了各因素的影响方式和重要性。通过与主流的LSTM模型预测结果进行对比分析,预验证了iTransformer模型的泛用性及预测效果的准确性和可靠性。根据实证研究结果,本文为未来研究方向提供了一些思路,为我国碳市场发展提供了三点政策建议。
With the global focus on ecological and environmental issues among major economies, China adheres to a green development strategy and strives to achieve its “dual carbon” goals. Under this context, the carbon emission rights market has become an effective policy tool for emission reduction, adopted by many countries. This study concentrates on the trading price of carbon emissions, analyzing the influencing factors from multiple perspectives. It constructs an iTransformer machine learning model to examine price fluctuation patterns and trends, using the carbon emissions GDEA of Guangdong Province as an empirical case for price prediction. Furthermore, SHAP analysis is employed to illustrate the impact and significance of various factors. By comparing the prediction results with those of the mainstream LSTM model, this study preliminarily verifies the versatility and accuracy of the iTransformer model. Based on empirical findings, the paper offers insights into future research directions and provides three policy recommendations for the development of China’s carbon market.
[1] | 王建芳, 苏利阳, 谭显春, 陈晓怡, 葛春雷. 主要经济体碳中和战略取向、政策举措及启示[J]. 中国科学院院刊, 2022, 37(4): 479-489. |
[2] | 危冰淋, 刘春雨, 刘家鹏. 基于Transformer-LSTM模型的多因素碳排放权交易价格预测[J]. 价格月刊, 2024(5): 49-57. |
[3] | 白强, 董洁, 田园春. 中国碳排放权交易价格的波动特征及其影响因素研究[J]. 统计与决策, 2022, 38(5): 161-165. |
[4] | Ling, M. and Cao, G. (2024) Carbon Trading Price Forecasting Based on Parameter Optimization VMD and Deep Network CNN-LSTM Model. International Journal of Financial Engineering, 11, Article ID: 2450002. https://doi.org/10.1142/s2424786324500026 |
[5] | Lu, H.F., Ma, X., Huang, K. and Azimi, M. (2020) Carbon Trading Volume and Price Forecasting in China Using Multiple Machine Learning Models. Journal of Cleaner Production, 249, Article ID: 119386. |
[6] | Zhou, J. and Chen, D. (2021) Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm. Sustainability, 13, Article No. 4896. https://doi.org/10.3390/su13094896 |
[7] | 任佳屹, 王爱银. 融合因果注意力Transformer模型的股价预测研究[J]. 计算机工程与应用, 2023, 59(13): 325-334. |
[8] | Liu, Y., Hu, T., Zhang, H., et al. (2023) iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. https://arxiv.org/abs/2310.06625 |
[9] | 王钰涵, 梁志勇. 基于iTransformer模型的金融时间序列预测[J]. 产业创新研究, 2024(15): 122-124. |
[10] | 郭宇辰, 加鹤萍, 余涛, 刘敦楠. 基于CNN-LSTM组合模型的碳价预测方法[J]. 科技管理研究, 2023, 43(11): 200-206. |
[11] | 曹超凡, 罗泽南, 谢佳鑫, 李路. MDT-CNN-LSTM模型的股价预测研究[J]. 计算机工程与应用, 2022, 58(5): 280-286. |