|
基于FPGA的64通道超声相控阵系统设计及参数研究
|
Abstract:
本研究提出了一种基于FPGA的64通道超声相控阵系统,旨在提高超声波束的精确控制和实时成像性能。该系统采用64个通道并行处理,通过FPGA实时计算每个通道的信号延迟和相位,从而实现超声波束的精准聚焦与扫描。系统硬件包括超声发射阵列、接收阵列、模拟前端模块(AFE)和数据处理单元,能够在多个通道间高效传输和处理信号。通过优化相位控制算法和数据传输路径,系统成功减少了信号处理的延迟,提高了响应速度和实时性。实验结果表明,系统具有良好的成像精度和较高的稳定性,能够在高噪声环境和长时间运行中保持较低的误差。图像分辨率达到0.5mm,聚焦深度精度为±1mm,成像清晰度为95%。此外,系统在响应速度和信噪比等方面表现优异,具备较高的抗干扰能力和快速成像能力。本研究为超声成像技术的发展提供了新的思路,具有广泛的应用前景,尤其在医疗诊断和物理治疗领域中具有重要的实际应用价值。
This study proposes a 64-channel ultrasound phased array system based on FPGA, aimed at improving the precise control of ultrasound beams and real-time imaging performance. The system uses 64 channels for parallel processing, with FPGA performing real-time calculations for signal delay and phase adjustment on each channel, thereby achieving precise focusing and scanning of the ultrasound beam. The system hardware includes an ultrasound transmitting array, receiving array, analog front-end (AFE) module, and data processing unit, enabling efficient signal transmission and processing across multiple channels. By optimizing the phase control algorithm and data transmission paths, the system successfully reduces signal processing delay, enhancing response speed and real-time performance. Experimental results show that the system offers excellent imaging accuracy and high stability, maintaining low error rates even in high-noise environments and during extended operation. The image resolution reaches 0.5 mm, with a focusing depth accuracy of ±1 mm and imaging clarity at 95%. Additionally, the system demonstrates excellent performance in response speed and signal-to-noise ratio, with strong anti-interference capability and rapid imaging capabilities. This research provides new insights into the development of ultrasound imaging technology and holds broad application prospects, particularly in medical diagnostics and physical therapy, with significant practical value.
[1] | Zhang, H., Li, J., Wang, Y., et al. (2023) Improvement of Ultrasound Resolution Using Lead-Free Piezoelectric Materials. Journal of Ultrasound in Medicine, 42, 123-134. |
[2] | Li, J., Zhang, H., Wang, X., et al. (2022) 3D Ultrasound Imaging and Its Applications in Early Cancer Detection. Medical Image Analysis, 76, 32-45. |
[3] | Liu, L., Chen, Y., Zhou, Y., et al. (2023) Real-Time 4D Ultrasound for Cardiac Imaging: Techniques and Clinical Applications. Journal of Medical Imaging, 28, 789-803. |
[4] | Wang, Y., Zhang, Z., Zhao, P., et al. (2024) AI-Based Ultrasound Diagnosis: Challenges and Opportunities. IEEE Transactions on Biomedical Engineering, 71, 1123-1135. |
[5] | Zhao, X., Liu, J., Zhang, Q., et al. (2023) Portable Ultrasound Systems for Rural Healthcare: Design and Performance. Journal of Telemedicine and Telecare, 29, 452-461. |
[6] | Chen, X., Zhang, R., Liu, M., et al. (2023) FPGA-Based Beamforming in Ultrasound Imaging Systems. Journal of Ultrasound Technology, 41, 234-245. |
[7] | Jiang, M., Li, T., Zhao, Z., et al. (2022) Power-Efficient FPGA Implementation for Medical Ultrasound Devices. IEEE Transactions on Biomedical Circuits and Systems, 16, 109-117. |
[8] | Li, Z., Zhang, P., Wu, H., et al. (2023) Accelerating Deep Learning-Based Ultrasound Image Analysis Using FPGA. Journal of Computational Biology, 30, 517-527. |
[9] | 凌子超, 张艳秋, 张默涵, 等. 多通道超声相控阵驱动控制系统设计[J]. 应用声学, 2023, 42(5): 948-953. |
[10] | 马毅超, 李煜, 李贞杰, 等. FPGA进位链64通道时间数字转换器设计[J]. 核电子学与探测技术, 2020, 40(6): 916-921. |
[11] | 徐皓胜, 曾伟, 杨绍辉, 等. 超声相控阵系统提高延时分辨率的研究进展[J]. 压电与声光, 2020, 42(5): 668-673. |
[12] | 张月, 陶林伟. 基于FPGA与STM32的多通道数据采集系统[J]. 西北工业大学学报, 2020, 38(2): 351-358. |
[13] | 於炜力, 曹永刚, 王月兵. 基于FPGA和以太网的超声相控阵发射系统研究[J]. 仪表技术与传感器, 2019(9): 46-50. |
[14] | 李宇中, 韩松, 张晓明, 等. 256阵元多组扫查超声相控阵系统设计[J]. 电脑与电信, 2019(8): 5-9, 24. |
[15] | 李宇中. 大阵元超声相控阵多组扫查系统研究[J]. 电脑与电信, 2019(7): 1-6. |
[16] | Pavan Kumar, N. and Patankar, V.H. (2024) Zynq Soc Fpga-Based Water-Immersible Ultrasonic Instrumentation for Pipe Inspection and Gauging. Engineering Research Express, 6, 015313. https://doi.org/10.1088/2631-8695/ad2d27 |
[17] | Lee, Y., Ko, D., Son, M., Yang, S. and Um, J. (2024) Arterial Distension Monitoring Scheme Using Fpga-Based Inference Machine in Ultrasound Scanner Circuit System. IEEE Transactions on Biomedical Circuits and Systems, 18, 702-713. https://doi.org/10.1109/tbcas.2024.3363134 |