全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

共价有机框架材料在基于吸附的大气水收集的研究进展
Research Progress on Covalent Organic Frameworks for Sorption-Based Atmospheric Water Harvesting

DOI: 10.12677/aac.2025.151010, PP. 90-100

Keywords: 共价有机框架材料,大气水收集,吸附–脱附
Covalent Organic Frameworks
, Atmospheric Water Harvesting, Adsorption-Desorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,水资源短缺问题越来越严重,基于吸附的大气水收集被认为是一种有效应对水资源短缺的新兴技术。共价有机框架结构(COFs)是一类新型的多孔结晶聚合物,由于其独特的结构特性使其能在气体存储与分离、催化、光电材料、及大气水收集等领域展现出广阔的应用前景。文章综述了COFs在大气水收集中的应用研究,简单介绍了大气水收集技术及在基于吸附的大气水收集(Sorption-Based Atmospheric Water Harvesting, SAWH)领域应用的COFs。
In recent years, water scarcity has become an increasingly pressing issue. One effective approach to addressing the imminent water shortage crisis is sorption-based atmospheric water harvesting (SAWH). Covalent organic frameworks (COFs) are a type of porous crystalline material. Due to its unique structural characteristics, it can show broad application prospects in the fields of gas storage and separation, catalysis, optoelectronic materials, and atmospheric water harvesting. Then, we summarize recent advances in using COF-based sorbents for atmospheric water harvesting and briefly introduce the technology of atmospheric water collection and the application of COFs in the field of sorption-based atmospheric water harvesting (SAWH).

References

[1]  Chen, Z., Song, S., Ma, B., Li, Y., Shao, Y., Shi, J., et al. (2021) Recent Progress on Sorption/Desorption-Based Atmospheric Water Harvesting Powered by Solar Energy. Solar Energy Materials and Solar Cells, 230, Article 111233.
https://doi.org/10.1016/j.solmat.2021.111233
[2]  Zhang, S., Fu, J., Das, S., Ye, K., Zhu, W. and Ben, T. (2022) Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption-Based Atmospheric Water Harvesting by Dual Hydrogen Bond System. Angewandte Chemie International Edition, 61, e202208660.
https://doi.org/10.1002/anie.202208660
[3]  Geng, K., He, T., Liu, R., Dalapati, S., Tan, K.T., Li, Z., et al. (2020) Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 120, 8814-8933.
https://doi.org/10.1021/acs.chemrev.9b00550
[4]  Côté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J. and Yaghi, O.M. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 1166-1170.
https://doi.org/10.1126/science.1120411
[5]  Colson, J.W., Woll, A.R., Mukherjee, A., Levendorf, M.P., Spitler, E.L., Shields, V.B., et al. (2011) Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, 332, 228-231.
https://doi.org/10.1126/science.1202747
[6]  Ding, S. and Wang, W. (2013) Covalent Organic Frameworks (COFs): From Design to Applications. Chemical Society Reviews, 42, 548-568.
https://doi.org/10.1039/c2cs35072f
[7]  Huang, N., Wang, P. and Jiang, D. (2016) Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nature Reviews Materials, 1, Article 16068.
https://doi.org/10.1038/natrevmats.2016.68
[8]  Wang, H., Zeng, Z., Xu, P., Li, L., Zeng, G., Xiao, R., et al. (2019) Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives. Chemical Society Reviews, 48, 488-516.
https://doi.org/10.1039/c8cs00376a
[9]  Guan, X., Ma, Y., Li, H., Yusran, Y., Xue, M., Fang, Q., et al. (2018) Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 140, 4494-4498.
https://doi.org/10.1021/jacs.8b01320
[10]  Sun, C., Sheng, D., Wang, B. and Feng, X. (2023) Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie International Edition, 62, e202303378.
https://doi.org/10.1002/anie.202303378
[11]  Lin, C., Zhang, L., Zhao, Z. and Xia, Z. (2017) Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Advanced Materials, 29, Article 1606635.
https://doi.org/10.1002/adma.201606635
[12]  Yu, S., Lyu, H., Tian, J., Wang, H., Zhang, D., Liu, Y., et al. (2016) A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants. Polymer Chemistry, 7, 3392-3397.
https://doi.org/10.1039/c6py00281a
[13]  Ma, L., Wang, S., Feng, X. and Wang, B. (2016) Recent Advances of Covalent Organic Frameworks in Electronic and Optical Applications. Chinese Chemical Letters, 27, 1383-1394.
https://doi.org/10.1016/j.cclet.2016.06.046
[14]  Wan, S., Gándara, F., Asano, A., Furukawa, H., Saeki, A., Dey, S.K., et al. (2011) Covalent Organic Frameworks with High Charge Carrier Mobility. Chemistry of Materials, 23, 4094-4097.
https://doi.org/10.1021/cm201140r
[15]  Wang, J., Hua, L., Li, C. and Wang, R. (2022) Atmospheric Water Harvesting: Critical Metrics and Challenges. Energy & Environmental Science, 15, 4867-4871.
https://doi.org/10.1039/d2ee03079a
[16]  Kim, H., Rao, S.R., Kapustin, E.A., Zhao, L., Yang, S., Yaghi, O.M., et al. (2018) Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates. Nature Communications, 9, Article No. 1191.
https://doi.org/10.1038/s41467-018-03162-7
[17]  Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., et al. (2017) Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight. Science, 356, 430-434.
https://doi.org/10.1126/science.aam8743
[18]  张成龙. 激光制备超疏水-超亲水仿生结构表面及集水特性研究[D]: [硕士学位论文]. 温州: 温州大学, 2023.
[19]  Ng, E. and Mintova, S. (2008) Nanoporous Materials with Enhanced Hydrophilicity and High Water Sorption Capacity. Microporous and Mesoporous Materials, 114, 1-26.
https://doi.org/10.1016/j.micromeso.2007.12.022
[20]  Tashiro, Y., Kubo, M., Katsumi, Y., Meguro, T. and Komeya, K. (2004) Assessment of Adsorption-Desorption Characteristics of Adsorbents for Adsorptive Desiccant Cooling System. Journal of Materials Science, 39, 1315-1319.
https://doi.org/10.1023/b:jmsc.0000013937.11959.6a
[21]  Resasco, D.E., Crossley, S.P., Wang, B. and White, J.L. (2021) Interaction of Water with Zeolites: A Review. Catalysis Reviews, 63, 302-362.
https://doi.org/10.1080/01614940.2021.1948301
[22]  Metrane, A., Delhali, A., Ouikhalfan, M., Assen, A.H. and Belmabkhout, Y. (2022) Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. Journal of Chemical & Engineering Data, 67, 1617-1653.
https://doi.org/10.1021/acs.jced.2c00145
[23]  Henninger, S.K., Jeremias, F., Kummer, H., Schossig, P. and Henning, H. (2012) Novel Sorption Materials for Solar Heating and Cooling. Energy Procedia, 30, 279-288.
https://doi.org/10.1016/j.egypro.2012.11.033
[24]  Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M. and Kim, J. (2003) Reticular Synthesis and the Design of New Materials. Nature, 423, 705-714.
https://doi.org/10.1038/nature01650
[25]  Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., et al. (2010) Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329, 424-428.
https://doi.org/10.1126/science.1192160
[26]  AbdulHalim, R.G., Bhatt, P.M., Belmabkhout, Y., Shkurenko, A., Adil, K., Barbour, L.J., et al. (2017) A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control. Journal of the American Chemical Society, 139, 10715-10722.
https://doi.org/10.1021/jacs.7b04132
[27]  Sheikhi, S. and Jalali, F. (2021) Zr-MOF@Polyaniline as an Efficient Platform for Nickel Deposition: Application to Methanol Electro-Oxidation. Fuel, 296, Article 120677.
https://doi.org/10.1016/j.fuel.2021.120677
[28]  Chen, Y., Li, P., Modica, J.A., Drout, R.J. and Farha, O.K. (2018) Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society, 140, 5678-5681.
https://doi.org/10.1021/jacs.8b02089
[29]  Gao, Z., Wang, C., Li, J., Zhu, Y., Zhang, Z. and Hu, W. (2020) Conductive Metal-Organic Frameworks for Electrocatalysis: Achievements, Challenges, and Opportunities. Acta Physico Chimica Sinica, 37, Article 2010025.
https://doi.org/10.3866/pku.whxb202010025
[30]  Gan, L., Wang, L., Xu, L., Fang, X., Pei, C., Wu, Y., et al. (2021) Fe3C-Porous Carbon Derived from Fe2O3 Loaded MOF-74(Zn) for the Removal of High Concentration BPA: The Integrations of Adsorptive/Catalytic Synergies and Radical/Non-Radical Mechanisms. Journal of Hazardous Materials, 413, Article 125305.
https://doi.org/10.1016/j.jhazmat.2021.125305
[31]  Liu, X., Wang, X. and Kapteijn, F. (2020) Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 120, 8303-8377.
https://doi.org/10.1021/acs.chemrev.9b00746
[32]  Nguyen, H.L. (2023) Covalent Organic Frameworks for Atmospheric Water Harvesting. Advanced Materials, 35, Article 2300018.
https://doi.org/10.1002/adma.202300018
[33]  Biswal, B.P., Kandambeth, S., Chandra, S., Shinde, D.B., Bera, S., Karak, S., et al. (2015) Pore Surface Engineering in Porous, Chemically Stable Covalent Organic Frameworks for Water Adsorption. Journal of Materials Chemistry A, 3, 23664-23669.
https://doi.org/10.1039/c5ta07998e
[34]  Stegbauer, L., Hahn, M.W., Jentys, A., Savasci, G., Ochsenfeld, C., Lercher, J.A., et al. (2015) Tunable Water and CO2 Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering. Chemistry of Materials, 27, 7874-7881.
https://doi.org/10.1021/acs.chemmater.5b02151
[35]  Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., et al. (2017) Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 139, 1856-1862.
https://doi.org/10.1021/jacs.6b08815
[36]  Nguyen, H.L., Hanikel, N., Lyle, S.J., Zhu, C., Proserpio, D.M. and Yaghi, O.M. (2020) A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. Journal of the American Chemical Society, 142, 2218-2221.
https://doi.org/10.1021/jacs.9b13094
[37]  Tan, K.T., Tao, S., Huang, N. and Jiang, D. (2021) Water Cluster in Hydrophobic Crystalline Porous Covalent Organic Frameworks. Nature Communications, 12, Article No. 6747.
https://doi.org/10.1038/s41467-021-27128-4
[38]  Nagai, A., Guo, Z., Feng, X., Jin, S., Chen, X., Ding, X., et al. (2011) Pore Surface Engineering in Covalent Organic Frameworks. Nature Communications, 2, Article No. 536.
https://doi.org/10.1038/ncomms1542
[39]  Nguyen, H.L., Gropp, C., Hanikel, N., Möckel, A., Lund, A. and Yaghi, O.M. (2022) Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 8, 926-932.
https://doi.org/10.1021/acscentsci.2c00398
[40]  Grunenberg, L., Savasci, G., Emmerling, S.T., Heck, F., Bette, S., Cima Bergesch, A., et al. (2023) Postsynthetic Transformation of Imine-Into Nitrone-Linked Covalent Organic Frameworks for Atmospheric Water Harvesting at Decreased Humidity. Journal of the American Chemical Society, 145, 13241-13248.
https://doi.org/10.1021/jacs.3c02572
[41]  Chen, L., Han, W., Yan, X., Zhang, J., Jiang, Y. and Gu, Z. (2022) A Highly Stable Ortho-Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting. Chem Sus Chem, 15, e202201824.
https://doi.org/10.1002/cssc.202201824
[42]  Sun, C., Zhu, Y., Shao, P., Chen, L., Huang, X., Zhao, S., et al. (2023) 2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angewandte Chemie International Edition, 62, e202217103.
https://doi.org/10.1002/anie.202217103
[43]  Chen, Y., Yang, Y., Wang, Y., Xiong, Q., Yang, J., Xiang, S., et al. (2022) Ultramicroporous Hydrogen-Bonded Organic Framework Material with a Thermoregulatory Gating Effect for Record Propylene Separation. Journal of the American Chemical Society, 144, 17033-17040.
https://doi.org/10.1021/jacs.2c06585

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133