|
离子型共价有机骨架材料在光催化应用中的最新进展
|
Abstract:
共价有机骨架(COFs)是一类由共价键周期性连接的有机组分组成的晶态多孔有机聚合物。COFs材料通常因其本身所具有的大Π电子共轭体系表现出许多突出的特性,如高比表面积和孔隙率、高化学稳定性和热稳定性,对合成单体的不同选择使其结构易调控。这些特殊的优势使COFs材料在光催化方面表现出卓越的性能。此外,通过离子掺杂可以显著提高COFs材料作为光催化剂的活性。文章综述了离子型COF基材料在光催化体系中的最新研究进展。首先,对离子型COFs (iCOFs)的制备方法进行了分析和比较。此外,还介绍了离子型COFs基材料光催化反应的基本原理以及光催化领域的最新研究进展。
Covalent Organic Frameworks (COFs) are crystalline porous organic polymer composed of organic components periodically linked by covalent bonds. COF materials usually exhibit many outstanding properties due to their large Π electron-conjugated system, such as high specific surface area and porosity, high chemical stability, and thermal stability, and the different selections of synthetic monomers make their structures easy to regulate. These special advantages make COFs materials show remarkable performance in photocatalysis. In addition, the activity of COFs as photocatalysts can be significantly improved by ion doping. The recent progress of research on ionic COF-based materials in photocatalytic systems is reviewed in this paper. Firstly, the preparation methods of ionic COFs (iCOFs) were analyzed and compared. In addition, the basic principle of photocatalytic reaction of ionic COFs-based materials and the latest research progress in the field of photocatalysis are also reviewed.
[1] | Wei, P., Qi, M., Wang, Z., Ding, S., Yu, W., Liu, Q., et al. (2018) Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 140, 4623-4631. https://doi.org/10.1021/jacs.8b00571 |
[2] | López-Magano, A., Jiménez-Almarza, A., Alemán, J. and Mas-Ballesté, R. (2020) Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 10, Article 720. https://doi.org/10.3390/catal10070720 |
[3] | Zhang, P., Wang, Z., Cheng, P., Chen, Y. and Zhang, Z. (2021) Design and Application of Ionic Covalent Organic Frameworks. Coordination Chemistry Reviews, 438, Article ID: 213873. https://doi.org/10.1016/j.ccr.2021.213873 |
[4] | Li, J., Jin, H., Qin, T., Liu, F., Wu, S. and Feng, L. (2024) Symmetrical Localized Built-In Electric Field by Induced Polarization Effect in Ionic Covalent Organic Frameworks for Selective Imaging and Killing Bacteria. ACS Nano, 18, 4539-4550. https://doi.org/10.1021/acsnano.3c11628 |
[5] | Chen, S., Wu, Y., Zhang, Y., Zhang, W., Fu, Y., Huang, W., et al. (2020) Tuning Proton Dissociation Energy in Proton Carrier Doped 2D Covalent Organic Frameworks for Anhydrous Proton Conduction at Elevated Temperature. Journal of Materials Chemistry A, 8, 13702-13709. https://doi.org/10.1039/d0ta04488a |
[6] | Ji, H., Qiao, D., Yan, G., Dong, B., Feng, Y., Qu, X., et al. (2023) Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 15, 37845-37854. https://doi.org/10.1021/acsami.3c08250 |
[7] | Fu, Y., Li, Y., Zhang, W., Luo, C., Jiang, L. and Ma, H. (2022) Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to US? Chemical Research in Chinese Universities, 38, 296-309. https://doi.org/10.1007/s40242-022-1448-8 |
[8] | Zhang, Y., Guo, J., Han, G., Bai, Y., Ge, Q., Ma, J., et al. (2021) Molecularly Soldered Covalent Organic Frameworks for Ultrafast Precision Sieving. Science Advances, 7, eabe8706. https://doi.org/10.1126/sciadv.abe8706 |
[9] | Wu, Q., Si, D., Wu, Q., Dong, Y., Cao, R. and Huang, Y. (2022) Boosting Electroreduction of Co2over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. Angewandte Chemie International Edition, 62, e202215687. https://doi.org/10.1002/anie.202215687 |
[10] | Dong, W., Qin, Z., Wang, K., Xiao, Y., Liu, X., Ren, S., et al. (2022) Isomeric Oligo(Phenylenevinylene)‐Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie International Edition, 62, e202216073. https://doi.org/10.1002/anie.202216073 |
[11] | Zhu, T., Kong, Y., Lyu, B., Cao, L., Shi, B., Wang, X., et al. (2023) 3D Covalent Organic Framework Membrane with Fast and Selective Ion Transport. Nature Communications, 14, Article No.5926. https://doi.org/10.1038/s41467-023-41555-5 |
[12] | Yang, X., An, Q., Li, X., Fu, Y., Yang, S., Liu, M., et al. (2024) Charging Modulation of the Pyridine Nitrogen of Covalent Organic Frameworks for Promoting Oxygen Reduction Reaction. Nature Communications, 15, Article No. 1889. https://doi.org/10.1038/s41467-024-46291-y |
[13] | He, C., Si, D., Huang, Y. and Cao, R. (2022) A CO2‐Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie International Edition, 61, e202207478. https://doi.org/10.1002/anie.202207478 |
[14] | Li, X., Zhang, K., Wang, G., Yuan, Y., Zhan, G., Ghosh, T., et al. (2022) Constructing Ambivalent Imidazopyridinium-Linked Covalent Organic Frameworks. Nature Synthesis, 1, 382-392. https://doi.org/10.1038/s44160-022-00071-y |
[15] | Kang, F., Wang, X., Chen, C., Lee, C., Han, Y. and Zhang, Q. (2023) Construction of Crystalline Nitrone-Linked Covalent Organic Frameworks via Kröhnke Oxidation. Journal of the American Chemical Society, 145, 15465-15472. https://doi.org/10.1021/jacs.3c03938 |
[16] | Tao, S., Xu, H., Xu, Q., Hijikata, Y., Jiang, Q., Irle, S., et al. (2021) Hydroxide Anion Transport in Covalent Organic Frameworks. Journal of the American Chemical Society, 143, 8970-8975. https://doi.org/10.1021/jacs.1c03268 |
[17] | Huang, N., Wang, P., Addicoat, M.A., Heine, T. and Jiang, D. (2017) Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie International Edition, 56, 4982-4986. https://doi.org/10.1002/anie.201611542 |
[18] | He, L., Chen, L., Dong, X., Zhang, S., Zhang, M., Dai, X., et al. (2021) A Nitrogen-Rich Covalent Organic Framework for Simultaneous Dynamic Capture of Iodine and Methyl Iodide. Chem, 7, 699-714. https://doi.org/10.1016/j.chempr.2020.11.024 |
[19] | Segura, J.L., Royuela, S. and Mar Ramos, M. (2019) Post-Synthetic Modification of Covalent Organic Frameworks. Chemical Society Reviews, 48, 3903-3945. https://doi.org/10.1039/c8cs00978c |
[20] | Skorjanc, T., Shetty, D., Gándara, F., Ali, L., Raya, J., Das, G., et al. (2020) Remarkably Efficient Removal of Toxic Bromate from Drinking Water with a Porphyrin-Viologen Covalent Organic Framework. Chemical Science, 11, 845-850. https://doi.org/10.1039/c9sc04663a |
[21] | Xie, Z., Wang, B., Yang, Z., Yang, X., Yu, X., Xing, G., et al. (2019) Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie International Edition, 58, 15742-15746. https://doi.org/10.1002/anie.201909554 |
[22] | Mi, Z., Yang, P., Wang, R., Unruangsri, J., Yang, W., Wang, C., et al. (2019) Stable Radical Cation-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion. Journal of the American Chemical Society, 141, 14433-14442. https://doi.org/10.1021/jacs.9b07695 |
[23] | Liu, M., Xu, Q. and Zeng, G. (2024) Ionic Covalent Organic Frameworks in Adsorption and Catalysis. Angewandte Chemie International Edition, 63, e202404886. https://doi.org/10.1002/anie.202404886 |
[24] | Qian, H., Yang, C. and Yan, X. (2016) Bottom-Up Synthesis of Chiral Covalent Organic Frameworks and Their Bound Capillaries for Chiral Separation. Nature Communications, 7, Article No. 12104. https://doi.org/10.1038/ncomms12104 |
[25] | Yu, F., Ciou, J., Chen, S., Poh, W.C., Chen, J., Chen, J., et al. (2022) Ionic Covalent Organic Framework Based Electrolyte for Fast-Response Ultra-Low Voltage Electrochemical Actuators. Nature Communications, 13, Article No. 390. https://doi.org/10.1038/s41467-022-28023-2 |
[26] | Bisbey, R.P. and Dichtel, W.R. (2017) Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. ACS Central Science, 3, 533-543. https://doi.org/10.1021/acscentsci.7b00127 |
[27] | Koo, B.T., Heden, R.F. and Clancy, P. (2017) Nucleation and Growth of 2D Covalent Organic Frameworks: Polymerization and Crystallization of COF Monomers. Physical Chemistry Chemical Physics, 19, 9745-9754. https://doi.org/10.1039/c6cp08449d |
[28] | Du, Y., Yang, H., Whiteley, J.M., Wan, S., Jin, Y., Lee, S., et al. (2015) Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie International Edition, 55, 1737-1741. https://doi.org/10.1002/anie.201509014 |
[29] | Ma, H., Liu, B., Li, B., Zhang, L., Li, Y., Tan, H., et al. (2016) Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 138, 5897-5903. https://doi.org/10.1021/jacs.5b13490 |
[30] | Yu, S., Lyu, H., Tian, J., Wang, H., Zhang, D., Liu, Y., et al. (2016) A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants. Polymer Chemistry, 7, 3392-3397. https://doi.org/10.1039/c6py00281a |
[31] | Hao, F., Yang, C., Lv, X., Chen, F., Wang, S., Zheng, G., et al. (2023) Photo‐Driven Quasi‐Topological Transformation Exposing Highly Active Nitrogen Cation Sites for Enhanced Photocatalytic H2O2 Production. Angewandte Chemie International Edition, 62, e202315456. https://doi.org/10.1002/anie.202315456 |
[32] | Li, Z., Liu, Z., Mu, Z., Cao, C., Li, Z., Wang, T., et al. (2020) Cationic Covalent Organic Framework Based All-Solid-State Electrolytes. Materials Chemistry Frontiers, 4, 1164-1173. https://doi.org/10.1039/c9qm00781d |
[33] | Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., et al. (2016) Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Applied Materials & Interfaces, 8, 18505-18512. https://doi.org/10.1021/acsami.6b06189 |
[34] | Zhang, Y., Duan, J., Ma, D., Li, P., Li, S., Li, H., et al. (2017) Three‐Dimensional Anionic Cyclodextrin‐Based Covalent Organic Frameworks. Angewandte Chemie International Edition, 56, 16313-16317. https://doi.org/10.1002/anie.201710633 |
[35] | Zhang, Z. and Xu, Y. (2023) Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. Journal of the American Chemical Society, 145, 25222-25232. https://doi.org/10.1021/jacs.3c08220 |
[36] | Xie, Y., Pan, T., Lei, Q., Chen, C., Dong, X., Yuan, Y., et al. (2021) Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine‐Capture Capacity. Angewandte Chemie International Edition, 60, 22432-22440. https://doi.org/10.1002/anie.202108522 |
[37] | Ding, H., Mal, A. and Wang, C. (2020) Tailored Covalent Organic Frameworks by Post-Synthetic Modification. Materials Chemistry Frontiers, 4, 113-127. https://doi.org/10.1039/c9qm00555b |
[38] | Rager, S., Dogru, M., Werner, V., Gavryushin, A., Götz, M., Engelke, H., et al. (2017) Pore Wall Fluorescence Labeling of Covalent Organic Frameworks. CrystEngComm, 19, 4886-4891. https://doi.org/10.1039/c7ce00684e |
[39] | Guo, H., Wang, J., Fang, Q., Zhao, Y., Gu, S., Zheng, J., et al. (2017) A Quaternary-Ammonium-Functionalized Covalent Organic Framework for Anion Conduction. CrystEngComm, 19, 4905-4910. https://doi.org/10.1039/c7ce00042a |
[40] | Liu, M., Yang, S., Yang, X., Cui, C., Liu, G., Li, X., et al. (2023) Post-Synthetic Modification of Covalent Organic Frameworks for CO2 Electroreduction. Nature Communications, 14, Article No. 3800. https://doi.org/10.1038/s41467-023-39544-9 |
[41] | Yin, M., Wang, L. and Tang, S. (2023) Stable Dicationic Covalent Organic Frameworks Manifesting Notable Structure-Enhanced CO2 Capture and Conversion. ACS Catalysis, 13, 13021-13033. https://doi.org/10.1021/acscatal.3c02796 |
[42] | Diercks, C.S. and Yaghi, O.M. (2017) The Atom, the Molecule, and the Covalent Organic Framework. Science, 355, eaal1585. https://doi.org/10.1126/science.aal1585 |
[43] | Cooper, A.I. (2013) Covalent Organic Frameworks. CrystEngComm, 15, 1483. https://doi.org/10.1039/c2ce90122f |
[44] | Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., et al. (2018) Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 140, 1423-1427. https://doi.org/10.1021/jacs.7b11255 |
[45] | Sick, T., Hufnagel, A.G., Kampmann, J., et al. (2018) Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 140, 2085-2092. |
[46] | Ortiz, M., Cho, S., Niklas, J., Kim, S., Poluektov, O.G., Zhang, W., et al. (2017) Through-space Ultrafast Photoinduced Electron Transfer Dynamics of a C70-Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium. Journal of the American Chemical Society, 139, 4286-4289. https://doi.org/10.1021/jacs.7b00220 |
[47] | Ben, H., Yan, G., Liu, H., Ling, C., Fan, Y. and Zhang, X. (2021) Local Spatial Polarization Induced Efficient Charge Separation of Squaraine-Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials, 32, Article ID: 2104519. https://doi.org/10.1002/adfm.202104519 |
[48] | Gao, Y., Nie, W., Zhu, Q., Wang, X., Wang, S., Fan, F., et al. (2020) The Polarization Effect in Surface‐Plasmon‐Induced Photocatalysis on Au/TiO2 Nanoparticles. Angewandte Chemie International Edition, 59, 18218-18223. https://doi.org/10.1002/anie.202007706 |
[49] | Chen, F., Huang, H., Guo, L., Zhang, Y. and Ma, T. (2019) The Role of Polarization in Photocatalysis. Angewandte Chemie International Edition, 58, 10061-10073. https://doi.org/10.1002/anie.201901361 |
[50] | Liu, Y., Han, W., Chi, W., Fu, J., Mao, Y., Yan, X., et al. (2023) One-dimensional Covalent Organic Frameworks with Atmospheric Water Harvesting for Photocatalytic Hydrogen Evolution from Water Vapor. Applied Catalysis B: Environmental, 338, 123074. https://doi.org/10.1016/j.apcatb.2023.123074 |
[51] | Wang, F., Yang, L., Wang, X., Rong, Y., Yang, L., Zhang, C., et al. (2023) Pyrazine‐Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport. Small, 19, Article ID: 2207421. https://doi.org/10.1002/smll.202207421 |
[52] | Mi, Z., Zhou, T., Weng, W., Unruangsri, J., Hu, K., Yang, W., et al. (2021) Covalent Organic Frameworks Enabling Site Isolation of Viologen‐Derived Electron‐Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 60, 9642-9649. https://doi.org/10.1002/anie.202016618 |
[53] | Cheng, Y., Wang, R., Wang, S., Xi, X., Ma, L. and Zang, S. (2018) Encapsulating [Mo3S13]2− Clusters in Cationic Covalent Organic Frameworks: Enhancing Stability and Recyclability by Converting a Homogeneous Photocatalyst to a Heterogeneous Photocatalyst. Chemical Communications, 54, 13563-13566. https://doi.org/10.1039/c8cc07784c |