全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种新型磺酸哌啶类有机盐的合成及其质子导电性的研究
Synthesis of a Novel Sulfonate-Piperidine Organic Salt and Its Proton Conduction Performance

DOI: 10.12677/aac.2025.151008, PP. 72-79

Keywords: 有机盐,质子导电,氢键
Organic Salt
, Proton Conductivity, Hydrogen Bond

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用四(4-磺酸基苯基)甲烷(TSPM)和4,4'-二哌啶(DP),通过分子间氢键相互作用,合成了一种新型有机盐(TSPM-DP),并对其进行了质子导电性的研究。结果表明,该有机盐具有良好的稳定性,并展现出优异的质子导电性,在45?C、100% RH的条件下,质子导电率可达4.4 × 103 S?cm1。同时,这种有机的合成方法简单,结合其较好的质子导电性,使其在燃料电池领域中具有一定的应用前景。
A novel type of organic salt (TSPM-DP) was synthesized using tetrakis(4-sulfophenyl)methane (TSPM) and 4,4’-dipiperidine (DP) and explored its proton conduction performance. The results show that the organic salt exhibits good stability and high proton conductivity, and the value can be reached as high as 4.4 × 10?3 S?cm?1 under 45?C and 100% RH conditions. Meanwhile, the organic salt is easy to synthesize, combining with the high proton conductivity, it will have a perspective application in fuel-cell technology.

References

[1]  Braga, D., d’Agostino, S. and Grepioni, F. (2012) Co-Crystals and Salts Obtained from Dinitrogen Bases and 1,2,3,4-Cyclobutane Tetracarboxylic Acid and the Use of the Latter as a Template for Solid-State Photocyclization Reactions. Crystal Growth & Design, 12, 4880-4889.
https://doi.org/10.1021/cg300716q
[2]  Liu, Y., Hu, C., Comotti, A. and Ward, M.D. (2011) Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds. Science, 333, 436-440.
https://doi.org/10.1126/science.1204369
[3]  Liu, Y., Xiao, W., Yi, J.J., Hu, C., Park, S. and Ward, M.D. (2015) Regulating the Architectures of Hydrogen-Bonded Frameworks through Topological Enforcement. Journal of the American Chemical Society, 137, 3386-3392.
https://doi.org/10.1021/jacs.5b00534
[4]  Zaręba, J.K., Białek, M.J., Janczak, J., Zoń, J. and Dobosz, A. (2014) Extending the Family of Tetrahedral Tectons: Phenyl Embraces in Supramolecular Polymers of Tetraphenylmethane-Based Tetraphosphonic Acid Templated by Organic Bases. Crystal Growth & Design, 14, 6143-6153.
https://doi.org/10.1021/cg501348g
[5]  Comotti, A., Bracco, S., Yamamoto, A., Beretta, M., Hirukawa, T., Tohnai, N., et al. (2014) Engineering Switchable Rotors in Molecular Crystals with Open Porosity. Journal of the American Chemical Society, 136, 618-621.
https://doi.org/10.1021/ja411233p
[6]  Yamamoto, A., Hasegawa, T., Hamada, T., Hirukawa, T., Hisaki, I., Miyata, M., et al. (2013) Role‐Allocated Combination of Two Types of Hydrogen Bonds towards Constructing a Breathing Diamondoid Porous Organic Salt. ChemistryA European Journal, 19, 3006-3016.
https://doi.org/10.1002/chem.201202959
[7]  Hinoue, T., Miyata, M., Hisaki, I. and Tohnai, N. (2011) Guest‐Responsive Fluorescence of Inclusion Crystals with II‐Stacked Supramolecular Beads. Angewandte Chemie International Edition, 51, 155-158.
https://doi.org/10.1002/anie.201106849
[8]  Yamamoto, A., Hirukawa, T., Hisaki, I., Miyata, M. and Tohnai, N. (2013) Multifunctionalized Porosity in Zeolitic Diamondoid Porous Organic Salt: Selective Adsorption and Guest-Responsive Fluorescent Properties. Tetrahedron Letters, 54, 1268-1273.
https://doi.org/10.1016/j.tetlet.2012.12.086
[9]  Soegiarto, A.C., Yan, W., Kent, A.D. and Ward, M.D. (2011) Regulating Low-Dimensional Magnetic Behavior of Organic Radicals in Crystalline Hydrogen-Bonded Host Frameworks. Journal of Materials Chemistry, 21, 2204-2219.
https://doi.org/10.1039/c0jm03449e
[10]  Karmakar, A., Illathvalappil, R., Anothumakkool, B., Sen, A., Samanta, P., Desai, A.V., et al. (2016) Hydrogen‐Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton‐Conducting Materials. Angewandte Chemie International Edition, 55, 10667-10671.
https://doi.org/10.1002/anie.201604534
[11]  Yang, G., Lee, C., Qiao, X., Babu, S.K., Martinez, U. and Spendelow, J.S. (2024) Advanced Electrode Structures for Proton Exchange Membrane Fuel Cells: Current Status and Path Forward. Electrochemical Energy Reviews, 7, Article No. 9.
https://doi.org/10.1007/s41918-023-00208-3
[12]  Kraytsberg, A. and Ein-Eli, Y. (2014) Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28, 7303-7330.
https://doi.org/10.1021/ef501977k
[13]  Li, P., He, B., Li, X., Lin, Y. and Tang, S. (2023) Chitosan‐Linked Dual‐Sulfonate COF Nanosheet Proton Exchange Membrane with High Robustness and Conductivity. Small, 19, Article ID: 2302060.
https://doi.org/10.1002/smll.202302060
[14]  Li, P., Zhang, N., Li, X. and Tang, S. (2023) Silk Nanofibril as Nanobinder for Preparing COF Nanosheet-Based Proton Exchange Membrane. Green Energy & Environment, 8, 915-926.
https://doi.org/10.1016/j.gee.2022.05.008
[15]  Sarma, B. and Nangia, A. (2007) Tetrakis(4-Sulfophenyl)Methane Dodecahydrate. Reversible and Selective Water Inclusion and Release in an Organic Host. CrystEngComm, 9, 628-631.
https://doi.org/10.1039/b706194c
[16]  Taylor, J.M., Mah, R.K., Moudrakovski, I.L., Ratcliffe, C.I., Vaidhyanathan, R. and Shimizu, G.K.H. (2010) Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal-Organic Framework. Journal of the American Chemical Society, 132, 14055-14057.
https://doi.org/10.1021/ja107035w
[17]  Morikawa, S., Yamada, T. and Kitagawa, H. (2009) Crystal Structure and Proton Conductivity of a One-Dimensional Coordination Polymer, {Mn(DHBQ)(H2O)2}. Chemistry Letters, 38, 654-655.
https://doi.org/10.1246/cl.2009.654
[18]  Kanda, S., Yamashita, K. and Ohkawa, K. (1979) A Proton Conductive Coordination Polymer. I. [n, n’-bis(2-Hydroxyethyl)Dithiooxamido]Copper(II). Bulletin of the Chemical Society of Japan, 52, 3296-3301.
https://doi.org/10.1246/bcsj.52.3296
[19]  Umeyama, D., Horike, S., Inukai, M., Hijikata, Y. and Kitagawa, S. (2011) Confinement of Mobile Histamine in Coordination Nanochannels for Fast Proton Transfer. Angewandte Chemie International Edition, 50, 11706-11709.
https://doi.org/10.1002/anie.201102997
[20]  Liu, M., Chen, L., Lewis, S., Chong, S.Y., Little, M.A., Hasell, T., et al. (2016) Three-Dimensional Protonic Conductivity in Porous Organic Cage Solids. Nature Communications, 7, Article No. 12750.
https://doi.org/10.1038/ncomms12750
[21]  Taylor, J.M., Dawson, K.W. and Shimizu, G.K.H. (2013) A Water-Stable Metal-Organic Framework with Highly Acidic Pores for Proton-Conducting Applications. Journal of the American Chemical Society, 135, 1193-1196.
https://doi.org/10.1021/ja310435e
[22]  Colodrero, R.M.P., Angeli, G.K., Bazaga-Garcia, M., Olivera-Pastor, P., Villemin, D., Losilla, E.R., et al. (2013) Structural Variability in Multifunctional Metal Xylenediaminetetraphosphonate Hybrids. Inorganic Chemistry, 52, 8770-8783.
https://doi.org/10.1021/ic400951s
[23]  Lim, D. and Kitagawa, H. (2020) Proton Transport in Metal-Organic Frameworks. Chemical Reviews, 120, 8416-8467.
https://doi.org/10.1021/acs.chemrev.9b00842
[24]  Chandra, S., Kundu, T., Kandambeth, S., BabaRao, R., Marathe, Y., Kunjir, S.M., et al. (2014) Phosphoric Acid Loaded Azo (−N=N−) Based Covalent Organic Framework for Proton Conduction. Journal of the American Chemical Society, 136, 6570-6573.
https://doi.org/10.1021/ja502212v
[25]  Ramaswamy, P., Wong, N.E. and Shimizu, G.K.H. (2014) MOFs as Proton Conductors—Challenges and Opportunities. Chemical Society Reviews journal, 43, 5913-5932.
https://doi.org/10.1039/c4cs00093e
[26]  Meng, X., Wang, H., Song, S. and Zhang, H. (2017) Proton-Conducting Crystalline Porous Materials. Chemical Society Reviews, 46, 464-480.
https://doi.org/10.1039/c6cs00528d

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133