全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ω-Dendriform代数和ω-Quadri代数
ω-Dendriform Algebras and ω-Quadri Algebras

DOI: 10.12677/pm.2025.152053, PP. 114-128

Keywords: ω-李代数,ω-Dendriform代数,ω-Quadri代数
ω-Lie Algebra
, ω-Dendriform Algebra, ω-Quadri Algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文定义了ω-dendriform代数和ω-quadri代数,并且研究了他们之间的代数结构的关系。首先,引入ω-左对称代数的表示的定义,研究其与ω-李代数的表示之间的关系。然后,类比结合代数与dendriform代数和quadri代数之间的关系,定义ω-dendriform代数和ω-quadri代数,并且研究了ω-李代数、ω-左对称代数、ω-dendriform代数和ω-quadri代数之间的关系。
In this paper, we define ω-dendriform algebra and ω-quadri algebra, and study the relationship between them. Firstly, the definition of representation of ω-left-symmetric algebra is introduced, and the relationship between the representation on ω-dendriform algebra and ω-Lie algebra is studied. Then, by analogying the relationship among associative algebra, dendriform algebra and quadri algebra, ω-dendriform algebra and ω-quadri algebra are defined, and the relationship among ω-Lie algebra, ω-left-symmetric algebra, ω-dendriform algebra and ω-quadri algebra is studied.

References

[1]  Loday, J.-L. (2001) Dialgebras, in Dialgebras and Related Operads. Springer-Verlag.
[2]  Frabetti, A. (1998) Leibniz Homilogy of Dialgebras of Matrices. Journal of Pure and Applied Algebra, 129, 123-141.
https://doi.org/10.1016/s0022-4049(97)00066-2
[3]  Foissy, L. (2002) Les algèbres de Hopf des arbres enracinés décorés, II. Bulletin des Sciences Mathématiques, 126, 249-288.
https://doi.org/10.1016/s0007-4497(02)01113-2
[4]  Aguiar, M. and Loday, J. (2004) Quadri-Algebras. Journal of Pure and Applied Algebra, 191, 205-221.
https://doi.org/10.1016/j.jpaa.2004.01.002
[5]  Ebrahimi-Fard, K. and Guo, L. (2005) On Products and Duality of Binary, Quadratic, Regular Operads. Journal of Pure and Applied Algebra, 200, 293-317.
https://doi.org/10.1016/j.jpaa.2004.12.020
[6]  Bai, C., Liu, L. and Ni, X. (2010) Some Results on L-Dendriform Algebras. Journal of Geometry and Physics, 60, 940-950.
https://doi.org/10.1016/j.geomphys.2010.02.007
[7]  Liu, L., Bai, C. and Ni, X. (2011) L-Quadri-Algebras. SCIENTIA SINICA Mathematica, 41, 105-124.
https://doi.org/10.1360/012009-1000
[8]  Hou, D. and Bai, C. (2011) J-Dendriform Algebras. Frontiers of Mathematics in China, 7, 29-49.
https://doi.org/10.1007/s11464-011-0160-7
[9]  Nurowski, P. (2007) Deforming a Lie Algebra by Means of a 2-Form. Journal of Geometry and Physics, 57, 1325-1329.
https://doi.org/10.1016/j.geomphys.2006.10.008
[10]  Zusmanovich, P. (2010) ω-Lie Algebras. Journal of Geometry and Physics, 60, 1028-1044.
https://doi.org/10.1016/j.geomphys.2010.03.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133