全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分布式时滞系统LQR最优控制问题的PI算法
PI Algorithm for LQR Optimal Control Problem of Distributed Time-Delay System

DOI: 10.12677/pm.2025.152052, PP. 104-113

Keywords: 分布式时滞系统,最优控制,策略迭代,线性二次最优控制问题
Distributed Time-Delay Systems
, Optimal Control, Policy Iteration, Linear Quadratic Regulator (LQR) Problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文将基于模型的策略迭代方法推广到了分布式时滞系统的线性二次最优控制问题(LQR)的求解,证明了由该迭代方法得到的性能指标是递减的,且控制器收敛于最优控制器。
This paper extends the model-based policy iteration method to the solution of the Linear Quadratic Regulator (LQR) problem for distributed delayed systems. It is demonstrated that the performance criterion obtained through this iterative method is monotonically decreasing, and the controller converges to the optimal controller.

References

[1]  张菊. 自动化技术在机械设计制造中的应用实践[J]. 机械管理开发, 2022, 37(2): 308-309.
[2]  黄建峰. 自动化技术在机械设计制造中的应用价值[J]. 黑龙江科学, 2021, 12(22): 116-117.
[3]  Kharitonov, V. (2012) Time-Delay Systems: Lyapunov Functionals and Matrices. Springer Science & Business Media.
[4]  Kwakernaak, H. and Sivan, R. (1972) Linear Optimal Control Systems. Wiley-Interscience.
[5]  Lancaster, P. and Rodman, L. (1995) Algebraic Riccati Equations. Oxford University Press, 504.
[6]  Xie, L., Fridman, E. and Shaked, U. (2001) Robust H/Sub ∞/ Control of Distributed Delay Systems with Application to Combustion Control. IEEE Transactions on Automatic Control, 46, 1930-1935.
https://doi.org/10.1109/9.975483
[7]  Jiang, Y. and Jiang, Z. (2012) Computational Adaptive Optimal Control for Continuous-Time Linear Systems with Completely Unknown Dynamics. Automatica, 48, 2699-2704.
https://doi.org/10.1016/j.automatica.2012.06.096
[8]  Jiang, Z., Bian, T. and Gao, W. (2020) Learning-Based Control: A Tutorial and Some Recent Results. Foundations and Trends® in Systems and Control, 8, 176-284.
https://doi.org/10.1561/2600000023
[9]  Cui, L., Pang, B. and Jiang, Z. (2024) Learning-Based Adaptive Optimal Control of Linear Time-Delay Systems: A Policy Iteration Approach. IEEE Transactions on Automatic Control, 69, 629-636.
https://doi.org/10.1109/tac.2023.3273786
[10]  Kleinman, D. (1968) On an Iterative Technique for Riccati Equation Computations. IEEE Transactions on Automatic Control, 13, 114-115.
https://doi.org/10.1109/tac.1968.1098829
[11]  Ross, D.W. and Flügge-Lotz, I. (1969) An Optimal Control Problem for Systems with Differential-Difference Equation Dynamics. SIAM Journal on Control, 7, 609-623.
https://doi.org/10.1137/0307044
[12]  Eidelman, Y., Milman, V. and Tsolomitis, A. (2004). Functional Analysis: An Introduction. American Mathematical Society.
https://doi.org/10.1090/gsm/066
[13]  Burns, J.A., Sachs, E.W. and Zietsman, L. (2008) Mesh Independence of Kleinman-Newton Iterations for Riccati Equations in Hilbert Space. SIAM Journal on Control and Optimization, 47, 2663-2692.
https://doi.org/10.1137/060653962

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133