全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

K ( n ) 上分次扩张的子环
Subrings of Graded Extensions in K ( n )

DOI: 10.12677/pm.2025.152050, PP. 93-97

Keywords: 斜群环,分次扩张,子环,锥
Skew Group Rings
, Graded Extension, Subring, Cone

Full-Text   Cite this paper   Add to My Lib

Abstract:

斜群环是一类非常重要的环,其上的分次扩张是一类非常重要的环扩张。本文在 K ( n ) 上分次扩张的基础下,研究了 K ( n ) 上分次扩张的子环,利用锥的理论证明了 K ( n ) 上分次扩张的子环与之相对应的锥的集合有一个一一对应关系。
Skew group rings are a very important class of rings, and the graded extensions over them are a very important class of ring extensions. In this paper, based on the graded extensions over K ( n ) , we study the subrings of the graded extensions over K ( n ) . By using the theory of cones, it is proved that there is a one-to-one correspondence between the set of subrings of the graded extensions over K ( n ) and the set of corresponding cones.

References

[1]  Xie, G. and Marubayshi, H. (2008) A Classification of Graded Extensions in a Skew Laurent Polynomial Ring. Journal of the Mathematical Society of Japan, 60, 423-443.
https://doi.org/10.2969/jmsj/06020423
[2]  Xie, G. and Marubayshi, H. (2009) A Classification of Graded Extensions in a Skew Laurent Polynomial Ring II. Journal of the Mathematical Society of Japan, 61, 1111-1130.
https://doi.org/10.2969/jmsj/06141111
[3]  Dubrovina, T.V. and Dubrovin, N.I. (1996) Cone in Groups. Sbornik: Mathematics, 187, 1005-1019.
https://doi.org/10.1070/SM1996v187n07ABEH000144
[4]  谢光明, 谷学伟, 陈义. 上的纯锥与上的平凡分次扩张[J]. 广西师范大学学报(自然科学版), 2009, 27(4): 36-40.
[5]  Brungs, H.H., Marubayshi, H. and Osmanagic, E. (2007) Gauss Extensions and Total Graded Subrings for Crossed Product Algebras. Journal of Algebra, 316, 189-205.
https://doi.org/10.1016/j.jalgebra.2007.06.011
[6]  Năstăsescu, C. and Van Oystaeyen, F. (1982) Graded Ring Theory. North-Holland Publishing Company, 28.
[7]  李海贺. 上的分次扩张[D]: [硕士学位论文]. 桂林: 广西师范大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133