|
Pure Mathematics 2025
上分次扩张的子环
|
Abstract:
斜群环是一类非常重要的环,其上的分次扩张是一类非常重要的环扩张。本文在
上分次扩张的基础下,研究了
上分次扩张的子环,利用锥的理论证明了
上分次扩张的子环与之相对应的锥的集合有一个一一对应关系。
Skew group rings are a very important class of rings, and the graded extensions over them are a very important class of ring extensions. In this paper, based on the graded extensions over
, we study the subrings of the graded extensions over
. By using the theory of cones, it is proved that there is a one-to-one correspondence between the set of subrings of the graded extensions over
and the set of corresponding cones.
[1] | Xie, G. and Marubayshi, H. (2008) A Classification of Graded Extensions in a Skew Laurent Polynomial Ring. Journal of the Mathematical Society of Japan, 60, 423-443. https://doi.org/10.2969/jmsj/06020423 |
[2] | Xie, G. and Marubayshi, H. (2009) A Classification of Graded Extensions in a Skew Laurent Polynomial Ring II. Journal of the Mathematical Society of Japan, 61, 1111-1130. https://doi.org/10.2969/jmsj/06141111 |
[3] | Dubrovina, T.V. and Dubrovin, N.I. (1996) Cone in Groups. Sbornik: Mathematics, 187, 1005-1019. https://doi.org/10.1070/SM1996v187n07ABEH000144 |
[4] | 谢光明, 谷学伟, 陈义. 上的纯锥与上的平凡分次扩张[J]. 广西师范大学学报(自然科学版), 2009, 27(4): 36-40. |
[5] | Brungs, H.H., Marubayshi, H. and Osmanagic, E. (2007) Gauss Extensions and Total Graded Subrings for Crossed Product Algebras. Journal of Algebra, 316, 189-205. https://doi.org/10.1016/j.jalgebra.2007.06.011 |
[6] | Năstăsescu, C. and Van Oystaeyen, F. (1982) Graded Ring Theory. North-Holland Publishing Company, 28. |
[7] | 李海贺. 上的分次扩张[D]: [硕士学位论文]. 桂林: 广西师范大学, 2017. |