全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

招聘职位信息分析与可视化呈现
Analysis and Visualization of Job Position Information

DOI: 10.12677/sea.2025.141002, PP. 8-16

Keywords: 爬虫技术,数据挖掘,机器学习,LDA主题模型,TF-IDF,数据可视化
Web Scraping Technology
, Data Mining, Machine Learning, LDA Topic Model, TF-IDF, Data Visualization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在借助大规模在线招聘职位信息的采集和分析,深度挖掘招聘市场的动态趋势和需求特点,为企业和求职者提供更全面的市场洞察和决策支持。首先,从求职者角度和企业角度分别展开需求分析,确定采用的技术方案及整体处理流程。然后,完成数据采集和数据整理。从招聘网址以爬虫的方法获取原始数据集,主要以Selenium与Edge WebDriver作为主要的网页爬取技术。数据爬取完成初始化网页浏览器、用户登录、信息提取、数据爬取、数据整合等工作。数据预处理完成数据去重、缺失值处理、数据拆分、数据整合、数据优化等任务。通过建立分类标准、应用自动化分类方法、手动审核与优化步骤完成数据分类流程。其次,为了有效地捕捉到文本数据的深层结构和含义,通过数据预处理、特征提取、模型建立、主题划分等流程,结合TF-IDF技术进行分析,对数据建立LDA主题模型,通过特征提取与主题分析,成功抽象出行业洞察。最后,用Matplotlib库对数据进行可视化呈现,完成基本数据可视化,对技能、薪资趋势和地区差异等数据展开关联分析,为招聘市场的动态变化提供了深入理解和全面分析。本文能为招聘市场的参与者提供深入洞察和一些实用指导。
This thesis aims to explore dynamic trends and demand characteristics in the recruitment market through extensive collection and analysis of online job postings. And it provides comprehensive market insights and decision support for businesses and job seekers. Initially, the demand analysis is conducted from the perspectives of both job seekers and businesses, the technical approach is determined, and the overall process flow is outlined. The subsequent study involves the completion of data collection and organization. Data acquisition from recruitment websites for job posting data employs web scraping techniques, primarily utilizing Selenium and Edge Web-driver. This process entails browser initialization, user authentication, information extraction, scraping, and subsequent data integration. Data preprocessing tasks include eliminating duplicates, handling missing values, splitting and integrating data, and data optimization. The data classification workflow is completed through the establishment of classification standards, the application of automated classification methods, subsequent manual review and optimization processes. Furthermore, In order to effectively capture the deep structure and meaning of textual data, an LDA topic model is established through data preprocessing, feature extraction, model establishment, and topic segmentation processes combined with TF-IDF analysis. By extracting features and analyzing topics, industry insights are successfully abstracted. Finally, data visualization is performed using the Matplotlib library. Basic data visualizations and correlation analysis of skills, salary trends, and regional differences are completed. Thus, this comprehensive analysis provides profound insights and practical guidance for participants in the recruitment market.

References

[1]  Xin, L., Zhou, B. and Liu, P. (2024) Position Information Visualization Analysis and Personalized Recommendation Based on Ant Colony. ICST Transactions on Scalable Information Systems, 11, 1-6.
https://doi.org/10.4108/eetsis.5061
[2]  刘一, 王跟成. 基于Python的就业趋势可视化分析系统[J]. 信息与电脑(理论版), 2021, 33(5): 99-101.
[3]  刘静, 王凤, 孟星, 等. Python在数据可视化中的应用案例分析[J]. 电子技术, 2023, 52(5): 391-393.
[4]  蔡文乐, 周晴晴, 刘玉婷, 秦立静. 基于Python爬虫的豆瓣电影影评数据可视化分析[J]. 现代信息科技, 2021, 5(18): 86-89+93.
[5]  汤飞弘. 基于Python爬虫的招聘信息数据可视化分析[J]. 软件, 2023, 44(1): 176-179.
[6]  汤洋, 汤敏倩. 网络招聘信息中职业类型与专业领域的情报分析[J]. 情报杂志, 2017, 36(6): 72-77.
[7]  施乾坤. 基于LDA模型的文本主题挖掘和文本静态可视化的研究[D]: [硕士学位论文]. 南宁: 广西大学, 2014.
[8]  Chen, Y.C. and Pan, R.J. (2022) Research on Data Analysis and Visualization of Recruitment Positions Based on Text Mining. Advances in Multimedia, 22, 77-79.
[9]  杨静. 基于文本挖掘的网络招聘信息分析[D]: [硕士学位论文]. 济南: 山东师范大学, 2019.
[10]  田书丽. 互联网招聘数据分析与可视化系统设计与实现[D]: [硕士学位论文]. 重庆: 西南大学, 2022.
[11]  Aizawa, A. (2003) An Information-Theoretic Perspective of tf-idf Measures. Information Processing & Management, 39, 45-65.
https://doi.org/10.1016/s0306-4573(02)00021-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133