|
景深延长型人工晶状体的临床应用和影响因素
|
Abstract:
白内障是我国目前排名第一的致盲性眼病,白内障超声乳化联合人工晶状体植入术是其主要治疗手段。临床上常用的人工晶状体主要可以分为单焦点和多焦点人工晶状体两类。而多焦点、景深延长型及散光矫正型人工晶状体等多种人工晶状体统称为功能性人工晶状体。随着屈光性白内障手术的开展,以及现代生活与工作方式变化的影响,传统的单焦点人工晶状体逐渐无法满足患者对于更广阔视程的需求,因此,功能性人工晶状体的应用越来越普遍。其中景深延长型(EDOF)人工晶状体是一类人工晶状体的总称,根据不同的设计原理具有不同的特性,但基本原理是延长单一的焦点为焦线,从而延长视程。EDOF人工晶状体不仅能够有效提升患者的远视力,还能获得理想的中间视力,增加术后脱镜率。与多焦点人工晶状体相比,EDOF人工晶状体所引发的眩光和光晕的几率较低,从而提供了更为优质的视觉质量。本文将对目前临床上常用的不同设计原理的EDOF人工晶状体、术后效果以及影响术后效果的多种因素进行综述。
Cataract is the leading cause of blindness in China, with phacoemulsification combined with intraocular lens (IOLs) implantation being the primary treatment method. The IOLs used in clinical practice can be broadly categorized into monofocal IOLs and multifocal IOLs. Among these, various IOLs such as multifocal IOLs, extended depth-of-focus (EDOF) IOLs, and astigmatism-correcting (Toric) IOLs are collectively referred to as functional IOLs. With advancements in refractive cataract surgery and shifts in modern lifestyle and work styles, traditional monofocal IOLs increasingly fail to meet patients’ demands for a broader visual range. Consequently, the use of functional IOLs is becoming increasingly prevalent. EDOF IOLs represent a category of IOLs that exhibit different characteristics based on distinct design principles; however, their fundamental principle involves extending a single focal point into a focal line, thereby broadening the visual range. EDOF IOLs not only significantly enhance patients’ distance visual acuity but also provide satisfactory intermediate visual acuity while improving the rate of spectacle independence. Compared to multifocal IOLs, EDOF IOLs are associated with a lower likelihood of glare and halos, thereby offering superior visual quality. This article will review the various EDOF IOLs commonly employed in clinical practice, their postoperative outcomes, and the diverse factors influencing these outcomes.
[1] | Nakazawa, M. and Ohtsuki, K. (1984) Apparent Accommodation in Pseudophakic Eyes after Implantation of Posterior Chamber Intra-Ocular Lenses: Optical Analysis. Investigative Ophthalmology & Visual Science, 25, 1458-1460. |
[2] | Lai, Y., Yeh, S. and Cheng, H. (2015) Distribution of Corneal and Ocular Spherical Aberrations in Eyes with Cataract in the Taiwanese Population. Taiwan Journal of Ophthalmology, 5, 72-75. https://doi.org/10.1016/j.tjo.2015.03.003 |
[3] | Cheng, H., Barnett, J.K., Vilupuru, A.S., Marsack, J.D., Kasthurirangan, S., Applegate, R.A., et al. (2004) A Population Study on Changes in Wave Aberrations with Accommodation. Journal of Vision, 4, 3. https://doi.org/10.1167/4.4.3 |
[4] | Giers, B.C., Khoramnia, R., Varadi, D., Wallek, H., Son, H., Attia, M.S., et al. (2019) Functional Results and Photic Phenomena with New Extended-Depth-of-Focus Intraocular Lens. BMC Ophthalmology, 19, Article No. 197. https://doi.org/10.1186/s12886-019-1201-3 |
[5] | Domínguez-Vicent, A., Esteve-Taboada, J.J., Del Águila-Carrasco, A.J., Ferrer-Blasco, T. and Montés-Micó, R. (2015) In Vitro Optical Quality Comparison between the Mini WELL Ready Progressive Multifocal and the TECNIS Symfony. Graefe’s Archive for Clinical and Experimental Ophthalmology, 254, 1387-1397. https://doi.org/10.1007/s00417-015-3240-7 |
[6] | Studeny, P., Krizova, D. and Urminsky, J. (2015) Clinical Experience with the WIOL-CF Accommodative Bioanalogic Intraocular Lens: Czech National Observational Registry. European Journal of Ophthalmology, 26, 230-235. https://doi.org/10.5301/ejo.5000653 |
[7] | Kim, Y.C., Kang, K.T., Yeo, Y., Kim, K. and Siringo, F.S. (2016) Consistent Pattern in Positional Instability of Polyfocal Full-Optics Accommodative IOL. International Ophthalmology, 37, 1299-1304. https://doi.org/10.1007/s10792-016-0398-x |
[8] | Borkenstein, A.F., Borkenstein, E., Luedtke, H. and Schmid, R. (2021) Optical Bench Analysis of 2 Depth of Focus Intraocular Lenses. Biomedicine Hub, 6, 77-85. https://doi.org/10.1159/000519139 |
[9] | Campbell, F.W. (1954) A Method for Measuring the Depth of Field of the Human Eye. The Journal of Physiology, 125, 11P. |
[10] | Hooshmand, J., Allen, P., Huynh, T., Chan, C., Singh, R., Moshegov, C., et al. (2019) Small Aperture IC-8 Intraocular Lens in Cataract Patients: Achieving Extended Depth of Focus through Small Aperture Optics. Eye, 33, 1096-1103. https://doi.org/10.1038/s41433-019-0363-9 |
[11] | Ang, R.E. (2020) Visual Performance of a Small-Aperture Intraocular Lens: First Comparison of Results after Contralateral and Bilateral Implantation. Journal of Refractive Surgery, 36, 12-19. https://doi.org/10.3928/1081597x-20191114-01 |
[12] | Dick, H.B., Elling, M. and Schultz, T. (2018) Binocular and Monocular Implantation of Small-Aperture Intraocular Lenses in Cataract Surgery. Journal of Refractive Surgery, 34, 629-631. https://doi.org/10.3928/1081597x-20180716-02 |
[13] | Rampat, R. and Gatinel, D. (2021) Multifocal and Extended Depth-Of-Focus Intraocular Lenses in 2020. Ophthalmology, 128, e164-e185. https://doi.org/10.1016/j.ophtha.2020.09.026 |
[14] | Gundersen, K. and Potvin, R. (2017) Trifocal Intraocular Lenses: A Comparison of the Visual Performance and Quality of Vision Provided by Two Different Lens Designs. Clinical Ophthalmology, 11, 1081-1087. https://doi.org/10.2147/opth.s136164 |
[15] | Lubiński, W., Podborączyńska-Jodko, K., Kirkiewicz, M., Mularczyk, M. and Post, M. (2020) Comparison of Visual Outcomes after Implantation of AtLisa tri 839 MP and Symfony Intraocular Lenses. International Ophthalmology, 40, 2553-2562. https://doi.org/10.1007/s10792-020-01435-z |
[16] | Pandit, R.T. (2018) Monocular Clinical Outcomes and Range of Near Vision Following Cataract Surgery with Implantation of an Extended Depth of Focus Intraocular Lens. Journal of Ophthalmology, 2018, Article 8205824. https://doi.org/10.1155/2018/8205824 |
[17] | Pedrotti, E., Bruni, E., Bonacci, E., Badalamenti, R., Mastropasqua, R. and Marchini, G. (2016) Comparative Analysis of the Clinical Outcomes with a Monofocal and an Extended Range of Vision Intraocular Lens. Journal of Refractive Surgery, 32, 436-442. https://doi.org/10.3928/1081597x-20160428-06 |
[18] | Kanclerz, P., Toto, F., Grzybowski, A. and Alio, J.L. (2020) Extended Depth-of-Field Intraocular Lenses: An Update. Asia-Pacific Journal of Ophthalmology, 9, 194-202. https://doi.org/10.1097/apo.0000000000000296 |
[19] | Gillmann, K. and Mermoud, A. (2019) Visual Performance, Subjective Satisfaction and Quality of Life Effect of a New Refractive Intraocular Lens with Central Extended Depth of Focus. Klinische Monatsblätter für Augenheilkunde, 236, 384-390. https://doi.org/10.1055/a-0799-9700 |
[20] | Akondi, V., Pérez-Merino, P., Martinez-Enriquez, E., Dorronsoro, C., Alejandre, N., Jiménez-Alfaro, I., et al. (2017) Evaluation of the True Wavefront Aberrations in Eyes Implanted with a Rotationally Asymmetric Multifocal Intraocular Lens. Journal of Refractive Surgery, 33, 257-265. https://doi.org/10.3928/1081597x-20161206-03 |
[21] | García-Domene, M.C., Felipe, A., Peris-Martínez, C., Navea, A., Artigas, J.M. and Pons, Á.M. (2015) Image Quality Comparison of Two Multifocal IOLs: Influence of the Pupil. Journal of Refractive Surgery, 31, 230-235. https://doi.org/10.3928/1081597x-20150319-02 |
[22] | Oshika, T., Arai, H., Fujita, Y., Inamura, M., Inoue, Y., Noda, T., et al. (2019) One-year Clinical Evaluation of Rotationally Asymmetric Multifocal Intraocular Lens with +1.5 Diopters near Addition. Scientific Reports, 9, Article No. 13117. https://doi.org/10.1038/s41598-019-49524-z |
[23] | García, S., Salvá, L., García-Delpech, S., Martínez-Espert, A., Ferrando, V. and Montagud-Martínez, D. (2022) Polychromatic Assessment of a Refractive Segmented EDOF Intraocular Lens. Journal of Clinical Medicine, 11, Article 1480. https://doi.org/10.3390/jcm11061480 |
[24] | Campos, N., Loureiro, T., Rodrigues-Barros, S., Rita Carreira, A., Gouveia-Moraes, F., Carreira, P., et al. (2021) Preliminary Clinical Outcomes of a New Enhanced Depth of Focus Intraocular Lens. Clinical Ophthalmology, 15, 4801-4807. https://doi.org/10.2147/opth.s344379 |
[25] | Ozturkmen, C., Kesim, C., Karadeniz, P.G. and Sahin, A. (2021) Visual Acuity, Defocus Curve and Patient Satisfaction of a New Hybrid EDOF-Multifocal Diffractive Intraocular Lens. European Journal of Ophthalmology, 32, 2988-2993. https://doi.org/10.1177/11206721211057338 |
[26] | Ribeiro, F.J., Ferreira, T.B., Silva, D., Matos, A.C. and Gaspar, S. (2021) Visual Outcomes and Patient Satisfaction after Implantation of a Presbyopia-Correcting Intraocular Lens That Combines Extended Depth-of-Focus and Multifocal Profiles. Journal of Cataract and Refractive Surgery, 47, 1448-1453. https://doi.org/10.1097/j.jcrs.0000000000000659 |
[27] | Gabrić, N., Gabrić, I., Gabrić, K., Biščević, A., Piñero, D.P. and Bohač, M. (2021) Clinical Outcomes with a New Continuous Range of Vision Presbyopia-Correcting Intraocular Lens. Journal of Refractive Surgery, 37, 256-262. https://doi.org/10.3928/1081597x-20210209-01 |
[28] | Schallhorn, J.M., Pantanelli, S.M., Lin, C.C., Al-Mohtaseb, Z.N., Steigleman, W.A., Santhiago, M.R., et al. (2021) Multifocal and Accommodating Intraocular Lenses for the Treatment of Presbyopia. Ophthalmology, 128, 1469-1482. https://doi.org/10.1016/j.ophtha.2021.03.013 |
[29] | MacRae, S., Holladay, J.T., Glasser, A., Calogero, D., Hilmantel, G., Masket, S., et al. (2017) Special Report: American Academy of Ophthalmology Task Force Consensus Statement for Extended Depth of Focus Intraocular Lenses. Ophthalmology, 124, 139-141. https://doi.org/10.1016/j.ophtha.2016.09.039 |
[30] | Kretz, F.T.A., Khoramnia, R., Attia, M.S., Koss, M.J., Linz, K. and Auffarth, G.U. (2016) Clinical Evaluation of Functional Vision of +1.5 Diopters near Addition, Aspheric, Rotational Asymmetric Multifocal Intraocular Lens. Korean Journal of Ophthalmology, 30, 382-389. https://doi.org/10.3341/kjo.2016.30.5.382 |
[31] | Karam, M., Alkhowaiter, N., Alkhabbaz, A., Aldubaikhi, A., Alsaif, A., Shareef, E., et al. (2023) Extended Depth of Focus versus Trifocal for Intraocular Lens Implantation: An Updated Systematic Review and Meta-Analysis. American Journal of Ophthalmology, 251, 52-70. https://doi.org/10.1016/j.ajo.2023.01.024 |
[32] | de Medeiros, A.L., Jones Saraiva, F., Iguma, C.I., Kniggendorf, D.V., Alves, G., Chaves, M.A.P.D., et al. (2019) Comparison of Visual Outcomes after Bilateral Implantation of Two Intraocular Lenses with Distinct Diffractive Optics. Clinical Ophthalmology, 13, 1657-1663. https://doi.org/10.2147/opth.s202895 |
[33] | Escandón-García, S., Ribeiro, F.J., McAlinden, C., Queirós, A. and González-Méijome, J.M. (2018) Through-Focus Vision Performance and Light Disturbances of 3 New Intraocular Lenses for Presbyopia Correction. Journal of Ophthalmology, 2018, Article 6165493. https://doi.org/10.1155/2018/6165493 |
[34] | Böhm, M., Petermann, K., Hemkeppler, E. and Kohnen, T. (2019) Defocus Curves of 4 Presbyopia-Correcting IOL Designs: Diffractive Panfocal, Diffractive Trifocal, Segmental Refractive, and Extended-Depth-of-Focus. Journal of Cataract and Refractive Surgery, 45, 1625-1636. https://doi.org/10.1016/j.jcrs.2019.07.014 |
[35] | Gil, M.A., Varón, C., Cardona, G. and Buil, J.A. (2019) Visual Acuity and Defocus Curves with Six Multifocal Intraocular Lenses. International Ophthalmology, 40, 393-401. https://doi.org/10.1007/s10792-019-01196-4 |
[36] | Monaco, G., Gari, M., Di Censo, F., Poscia, A., Ruggi, G. and Scialdone, A. (2017) Visual Performance after Bilateral Implantation of 2 New Presbyopia-Correcting Intraocular Lenses: Trifocal versus Extended Range of Vision. Journal of Cataract and Refractive Surgery, 43, 737-747. https://doi.org/10.1016/j.jcrs.2017.03.037 |
[37] | Ruiz-Mesa, R., Abengózar-Vela, A., Aramburu, A. and Ruiz-Santos, M. (2017) Comparison of Visual Outcomes after Bilateral Implantation of Extended Range of Vision and Trifocal Intraocular Lenses. European Journal of Ophthalmology, 27, 460-465. https://doi.org/10.5301/ejo.5000935 |
[38] | Webers, V.S.C., Bauer, N.J.C., Saelens, I.E.Y., Creten, O.J.M., Berendschot, T.T.J.M., van den Biggelaar, F.J.H.M., et al. (2020) Comparison of the Intermediate Distance of a Trifocal IOL with an Extended Depth-of-Focus IOL: Results of a Prospective Randomized Trial. Journal of Cataract and Refractive Surgery, 46, 193-203. https://doi.org/10.1097/j.jcrs.0000000000000012 |
[39] | Farvardin, M., Johari, M., Attarzade, A., Rahat, F., Farvardin, R. and Farvardin, Z. (2020) Comparison between Bilateral Implantation of a Trifocal Intraocular Lens(Alcon Acrysof IQ® PanOptix) and Extended Depth of Focus Lens (Tecnis® Symfony® ZXR00 Lens). International Ophthalmology, 41, 567-573. https://doi.org/10.1007/s10792-020-01608-w |
[40] | Cochener, B., Boutillier, G., Lamard, M. and Auberger-Zagnoli, C. (2018) A Comparative Evaluation of a New Generation of Diffractive Trifocal and Extended Depth of Focus Intraocular Lenses. Journal of Refractive Surgery, 34, 507-514. https://doi.org/10.3928/1081597x-20180530-02 |
[41] | Law, E.M., Aggarwal, R.K., Buckhurst, H., Kasaby, H.E., Marsden, J., Shum, G., et al. (2021) One-Year Post-Operative Comparison of Visual Function and Patient Satisfaction with Trifocal and Extended Depth of Focus Intraocular Lenses. European Journal of Ophthalmology, 32, 2967-2974. https://doi.org/10.1177/11206721211069737 |
[42] | Rementería-Capelo, L.A., García-Pérez, J.L., Gros-Otero, J., Carrillo, V., Pérez-Lanzac, J. and Contreras, I. (2020) Real-world Evaluation of Visual Results and Patient Satisfaction for Extended Range of Focus Intraocular Lenses Compared to Trifocal Lenses. International Ophthalmology, 41, 163-172. https://doi.org/10.1007/s10792-020-01563-6 |
[43] | Ang, R.E., Picache, G.C.S., Rivera, M.C.R., Lopez, L.R.L. and Cruz, E.M. (2020) A Comparative Evaluation of Visual, Refractive, and Patient-Reported Outcomes of Three Extended Depth of Focus (EDOF) Intraocular Lenses. Clinical Ophthalmology, 14, 2339-2351. |
[44] | Sharma, N., Kaur, M., Agarwal, T., Sangwan, V.S. and Vajpayee, R.B. (2018) Treatment of Acute Ocular Chemical Burns. Survey of Ophthalmology, 63, 214-235. https://doi.org/10.1016/j.survophthal.2017.09.005 |
[45] | Savini, G., Schiano-Lomoriello, D., Balducci, N. and Barboni, P. (2018) Visual Performance of a New Extended Depth-of-Focus Intraocular Lens Compared to a Distance-Dominant Diffractive Multifocal Intraocular Lens. Journal of Refractive Surgery, 34, 228-235. https://doi.org/10.3928/1081597x-20180125-01 |
[46] | Rani, P., Raman, R., Chandrakantan, A., Pal, S., Perumal, G. and Sharma, T. (2009) Risk Factors for Diabetic Retinopathy in Self-Reported Rural Population with Diabetes. Journal of Postgraduate Medicine, 55, 92-96. https://doi.org/10.4103/0022-3859.48787 |
[47] | Wong, T.Y., Cheung, N., Tay, W.T., Wang, J.J., Aung, T., Saw, S.M., et al. (2008) Prevalence and Risk Factors for Diabetic Retinopathy. Ophthalmology, 115, 1869-1875. https://doi.org/10.1016/j.ophtha.2008.05.014 |
[48] | Lim, M.C., Lee, S.Y., Cheng, B.C., Wong, D.W., Ong, S.G., Ang, C.L., et al. (2008) Diabetic Retinopathy in Diabetics Referred to a Tertiary Centre from a Nationwide Screening Programme. Annals of the Academy of Medicine, 37, 753-759. https://doi.org/10.47102/annals-acadmedsg.v37n9p753 |
[49] | Chen, X.Y., Song, W.J., Cai, H.Y. and Zhao, L. (2016) Macular Edema after Cataract Surgery in Diabetic Eyes Evaluated by Optical Coherence Tomography. International Journal of Ophthalmology, 9, 81-85. |
[50] | Hayashi, K., Hayashi, H., Nakao, F. and Hayashi, F. (2002) Posterior Capsule Opacification after Cataract Surgery in Patients with Diabetes Mellitus. American Journal of Ophthalmology, 134, 10-16. https://doi.org/10.1016/s0002-9394(02)01461-7 |
[51] | Shin, D.E., Lee, H., Kim, T. and Koh, K. (2022) Comparison of Visual Results and Optical Quality of Two Presbyopia-Correcting Intraocular Lenses: TECNIS Symfony versus TECNIS Synergy. European Journal of Ophthalmology, 32, 3461-3469. https://doi.org/10.1177/11206721221093024 |
[52] | Mencucci, R., Favuzza, E., Caporossi, O., Savastano, A. and Rizzo, S. (2018) Comparative Analysis of Visual Outcomes, Reading Skills, Contrast Sensitivity, and Patient Satisfaction with Two Models of Trifocal Diffractive Intraocular Lenses and an Extended Range of Vision Intraocular Lens. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256, 1913-1922. https://doi.org/10.1007/s00417-018-4052-3 |
[53] | Giménez-Calvo, G., Bartol-Puyal, F.d.A., Altemir, I., Méndez-Martínez, S., Almenara, C., Soriano-Pina, D., et al. (2022) Influence of Ocular Biometric Factors on the Defocus Curve in an Enlarged Depth-of-Focus Intraocular Lens. International Ophthalmology, 43, 945-955. https://doi.org/10.1007/s10792-022-02496-y |
[54] | Luo, J., Liu, Y., Wang, F., Su, Y., Xiao, X., Du, H., et al. (2021) Effect of the Kappa Angle on Depth of Focus after Implantation of the TECNIS Symfony Intraocular Lens. International Ophthalmology, 41, 2513-2520. https://doi.org/10.1007/s10792-021-01809-x |
[55] | Teshigawara, T., Meguro, A. and Mizuki, N. (2021) The Effect of Age, Postoperative Refraction, and Pre-and Postoperative Pupil Size on Halo Size and Intensity in Eyes Implanted with a Trifocal or Extended Depth-of-Focus Lens. Clinical Ophthalmology, 15, 4141-4152. https://doi.org/10.2147/opth.s327660 |
[56] | 中华医学会眼科学分会白内障及人工晶状体学组. 中国多焦点人工晶状体临床应用专家共识(2019年) [J]. 中华眼科杂志, 2019, 55(7):491-494. |
[57] | Sánchez-González, J., Sánchez-González, M.C., De-Hita-Cantalejo, C. and Ballesteros-Sánchez, A. (2022) Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review. Journal of Clinical Medicine, 11, Article 4654. https://doi.org/10.3390/jcm11164654 |
[58] | Fernandes, M.C., Nunomura, C.Y. and Messias, A. (2024) Visual Performance and Photic Disturbances with Diffractive and Nondiffractive EDOF Intraocular Lenses Using Mini-Monovision: Randomized Trial. Journal of Cataract and Refractive Surgery, 50, 153-159. https://doi.org/10.1097/j.jcrs.0000000000001330 |