We implemented a two-step Asymmetric Perfectly Matched Layer (APML) model in High-Order Finite Difference Time Domain (FDTD) algorithm for solving two-dimensional Maxwell’s equations. Initially, we applied the APML method to the standard second-order FDTD algorithm to derive a two-step time-staggered APML (APML-2SS) and a two-step time-centered APML (APML-2SC) formulation for these equations, afterwards, we extended these formulations in high-order FDTD algorithm in order to derive a APML high-order FDTD (APML-HOFDTD) formulation for our Maxwell’s equations. To examine the performance and check out the accuracy of APML model, we conducted a numerical study using a 2D fluid where the three derived formulations were to analyze selected phenomena in terahertz radiation production by the filamentation of two femtosecond laser beams in air plasma. Numerical results illustrated that the two-step APML model is sufficiently accurate for solving our 2D Maxwell’s equations in high-order FDTD discretization and it demonstrated a great performance in studying the THz radiation production.
References
[1]
Berenger, J.-P. (1996) Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics, 127, 363-379. https://doi.org/10.1006/jcph.1996.0181
[2]
Brenger, J.-P. (2007) Perfectly Matched Layer (PML) for Computational Electromagnetics. Springer International Publishing. https://doi.org/10.1007/978-3-031-01696-7
[3]
Cummer, S.A. (2003) A Simple, Nearly Perfectly Matched Layer for General Electromagnetic Media. IEEE Microwave and Wireless Components Letters, 13, 128-130. https://doi.org/10.1109/LMWC.2003.810124
[4]
Holland, R. and Williams, J.W. (1983) Total-Field Versus Scattered-Field Finite-Difference Codes: A Comparative Assessment. IEEE Transactions on Nuclear Science, 30, 4583-4588. https://doi.org/10.1109/TNS.1983.4333175
[5]
Ji, D.Q., Wang, Q., Chen, Z.X., Harding, T.G., Dong, M.Z., Ge, C.Q., Li, Z.P. and Lai, F.P. (2020) A Property-Dependent Perfectly Matched Layer with a Single Additional Layer for Maxwells Equations in Finite Difference Frequency Domains. Computer Methods in Applied Mechanics and Engineering, 372, Article ID: 113355. https://doi.org/10.1016/j.cma.2020.113355
[6]
Taflove, A., Susan, C., Hagness, and Piket-May, M. (2005) 9-Computational Electromagnetics: The Finite-Difference Time-Domain Method. In: Chen, W.-K., Ed., The Electrical Engineering Handbook, Academic Press, Burlington, 629-670. https://doi.org/10.1016/B978-012170960-0/50046-3
[7]
Ramadan, O. (2003) Auxiliary Differential Equation Formulation: An Efficient Implementation of the Perfectly Matched Layer. IEEE Microwave and Wireless Components Letters, 13, 69-71. https://doi.org/10.1109/LMWC.2003.808706
[8]
Festa, G. and Vilotte, J.-P. (2005) The Newmark Scheme as Velocity Stress Time-Staggering: An Efficient PML Implementation for Spectral Element Simulations of Elastodynamics. Geophysical Journal International, 16, 789-812. https://doi.org/10.1111/j.1365-246X.2005.02601.x
[9]
Alan Roden, J. and Gedney, S.D. (2000) Convolution PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media. Microwave and Optical Technology Letters, 27, 334-339. https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
[10]
Chew, W.C. and Weedon, W.H. (1994) A 3d Perfectly Matched Medium from Modified Maxwell’S Equations with Stretched Coordinates. Microwave and Optical Technology Letters, 7, 599-604. https://doi.org/10.1002/mop.4650071304
[11]
Wang, T.S.l. and Tang, X.M. (2003) Finite? Difference Modeling of Elastic Wave Propagation: A Nonsplitting Perfectly Matched Layer Approach. Geophysics, 68, Article ID: 1620648. https://doi.org/10.1190/1.1620648
[12]
Chen, H.M., Zhou, H. and Li. Y.Q. (2014) Application of Unsplit Convolutional Perfectly Matched Layer for Scalar Arbitrarily Wide-Angle Wave Equation. Geophysics, 79, T313-T321. https://doi.org/10.1190/geo2014-0103.1
[13]
Fang, J.Y. and Wu, Z.h. (1995) Generalized Perfectly Matched Layer—An Extension of Berenger’S Perfectly Matched Layer Boundary Condition. IEEE Microwave and Guided Wave Letters, 5, 451-453. https://doi.org/10.1109/75.481858
[14]
Xu, F., Zhang, Y.l., Hong, W., Wu, K. and Cui, T.-J. (2003) Finite-Difference Frequency-Domain Algorithm for Modeling Guided-Wave Properties of Substrate Integrated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 51, 2221-2227. https://doi.org/10.1109/TMTT.2003.818935
[15]
Connolly, D.P., Giannopoulos, A. and Forde, M.C. (2015) A Higher Order Perfectly Matched Layer Formulation for Finite-Difference Time-Domain Seismic Wave Modeling. Geophysics, 80, T1-T16. https://doi.org/10.1190/geo2014-0157.1
[16]
Petropoulos, P.G., Zhao, L. and Cangellaris, A.C. (1998) A Reflectionless Sponge Layer Absorbing Boundary Condition for the Solution of Maxwell’s Equations with High-Order Staggered Finite Difference Schemes. Journal of Computational Physics, 139, 184-208. https://doi.org/10.1006/jcph.1997.5855
[17]
Shapoval, O., Vay, J.-L. and Vincenti, H. (2019) Two-Step Perfectly Matched Layer for Arbitrary-Order Pseudo-Spectral Analytical Time-Domain Methods. Computer Physics Communications, 235, 102-110. https://doi.org/10.1016/j.cpc.2018.09.015
[18]
Kim, K.Y. Taylor, A.J., Glownia, J.H. and Rodriguez, G. (2008) Coherent Control of Terahertz Supercontinuum Generation in Ultrafast Lasergas Interactions. Nature Photonics, 2, 605-609. https://doi.org/10.1038/nphoton.2008.153
[19]
Cook, D.J. and Hochstrasser, R.M. (2000) Intense Terahertz Pulses by Four-Wave Rectification in Air. Optics Letters, 25, 1210-1212. https://doi.org/10.1364/OL.25.001210
[20]
Nguyen, A., González de Alaiza Martínez, P., Thiele, I., Skupin, S. and Bergé, L. (2018) THz Field Engineering in Two-Color Femtosecond Filaments Using Chirped and Delayed Laser Pulses. New Journal of Physics, 20, Article ID: 033026. https://doi.org/10.1088/1367-2630/aaa470
[21]
Ammosov, M.V., Delone, N.B. and Krainov, V.P. (1986) Tunnel Ionization of Complex Atoms and Atomic Ions in Electromagnetic Field. Soviet Physics-JETP, 64, 138-141. https://doi.org/10.1117/12.938695
Vay, J.-L. (2002) Asymmetric Perfectly Matched Layer for the Absorption of Waves. Journal of Computational Physics, 183, 367-399. https://doi.org/10.1006/jcph.2002.7175
[24]
Vay, J.-L. (2001) An Extended FDTD Scheme for the Wave Equation: Application to Multiscale Electromagnetic Simulation. Journal of Computational Physics, 167, 72-98. https://doi.org/10.1006/jcph.2000.6659
[25]
Fornberg, B. (1990) High-Order Finite Differences and the Pseudospectral Method on Staggered Grids. SIAM Journal on Numerical Analysis, 27, 904-918. https://doi.org/10.1137/0727052
[26]
Khan, I.R. and Ohba, R. (1999) Closed-Form Expressions for the Finite Difference Approximations of First and Higher Derivatives Based on Taylor Series. Journal of Computational and Applied Mathematics, 107, 179-193. https://doi.org/10.1016/S0377-0427(99)00088-6
[27]
Vincenti, H. and Vay, J.-L. (2016) Detailed Analysis of the Effects of Stencil Spatial Variations with Arbitrary High-Order Finite-Difference Maxwell Solver. Computer Physics Communications, 200, 147-167. https://doi.org/10.1016/j.cpc.2015.11.009
[28]
Mahdy, A.I. and Eltayeb, H.A. (2024) The Efficiency of Terahertz Radiation Generated by Two Chirped Femtosecond Laser Pulses at Different Pulse Durations. AIP Advances, 14, Article ID: 015345. https://doi.org/10.1063/5.0185372
[29]
Zhang, Z., Panov, N., Andreeva, V., Zhang, Z.l., Slepkov, A., Shipilo, D., Thomson, M.D., Wang, T.-J., Babushkin, I., Demircan, A., Morgner, U., Chen, Y.P., Kosareva, O. and Savel’ev, A. (2018) Optimum Chirp for Efficient Terahertz Generation from Two-Color Femtosecond Pulses in Air. Applied Physics Letters, 113, Article ID: 241103. https://doi.org/10.1063/1.5053893
[30]
Mahdy, A.I. and Eltayeb, H.A. (2024) The Conversion Efficiency of Terahertz Radiation Produced by the Filamentation of Two Femtosecond Laser Beams in Highly Charged Noble Gases. Physics of Plasmas, 31, Article ID: 122108. https://doi.org/10.1063/5.0233676
[31]
Babushkin, I., Kuehn, W., Köhler, C., Skupin, S., Berge, L., Reimann, K., Woerner, M., Herrmann, J. and Elsaesser, T. (2010) Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases. Physical Review Letters, 105, Article ID: 053903. https://doi.org/10.1103/PhysRevLett.105.053903
[32]
Kim, K.Y., Glownia, J.H., Taylor, A.J. and Rodriguez, G. (2007) Terahertz Emission from Ultrafast Ionizing Air in Symmetry-Broken Laser Fields. Optics Express, 15, 4577-4584. https://doi.org/10.1364/OE.15.004577
[33]
Ding, P.J., Guo, Z.Q., Wang, X.S., Cao, Y., Sun, M.Z., Zhao, P.X., Shi, Y.C., Sun, S.H., Liu, X.L. and Hu, B.T. (2013) Energy Exchange between Two Noncollinear Filament-Forming Laser Pulses in Air. Optics Express, 21, 27631-27640. https://doi.org/10.1364/OE.21.027631
[34]
Houard, A., Liu, Y., Mysyrowicz, A. and Leriche, B. (2007) Calorimetric Detection of the Conical Terahertz Radiation from Femtosecond Laser Filaments in Air. Applied Physics Letters, 91, Article ID: 241105. https://doi.org/10.1063/1.2821371
[35]
González de Alaiza Martínez, P., Davoine, X., Debayle, A., Gremillet, L. and Berge, L. (2016) Terahertz Radiation Driven by Two-Color Laser Pulses at Near-Relativistic Intensities: Competition between Photoionization and Wakefield Effects. Scientific Reports, 6, Article No. 26743. https://doi.org/10.1038/srep26743
[36]
Oh, T.I., You, Y.S. Jhajj, N., Rosenthal, E.W., Milchberg, H.M. and Kim, K.Y. (2013) Intense Terahertz Generation in Two-Color Laser Filamentation: Energy Scaling with Terawatt Laser Systems. New Journal of Physics, 15, Article ID: 075002. https://doi.org/10.1088/1367-2630/15/7/075002
[37]
Wang, T.-J., Yuan, S., Chen, Y.P., Daigle, J.-F., Marceau, C., Thberge, F., Chteauneuf, M., Dubois, J. and Chin, S.L. (2010) Toward Remote High Energy Terahertz Generation. Applied Physics Letters, 97, Article ID: 111108. https://doi.org/10.1063/1.3490702
[38]
Chen, G., Kawayama, I., Murakami, H., Teramoto, T. and Tonouchi M. (2021) Intensity-Dependent Self-Induced Dual-Color Laser Phase Modulation and its Effect on Terahertz Generation. Scientific Reports, 11, Article No. 498. https://doi.org/10.1038/s41598-020-80105-7