全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamics of a Class of Multiple Sclerosis Models with Saturated Activation Rates of T Cells

DOI: 10.4236/jamp.2025.132029, PP. 525-552

Keywords: Multiple Sclerosis Model, Saturated Functional Response, Equilibrium Point, Stability, Hopf Bifurcation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many autoimmune diseases exhibit an alternating pattern of relapses and remissions in which the apparent self-tolerance phase is interrupted by periodic autoimmune episodes. In this paper, we introduce a class of terminally differentiated effector T cells to an existing model of autoimmune disease and investigate the stability and Hopf branching phenomenon in a model of multiple sclerosis with a saturable functional response. First, we explore the local asymptotic stability of the equilibrium point and propose conditions for the existence of Hopf branching. Finally, with the help of canonical type theory and the central manifold theorem, we analyze the direction of Hopf branching and the stability of branching periodic solutions.

References

[1]  Kumar, B.V., Connors, T.J. and Farber, D.L. (2018) Human T Cell Development, Localization, and Function Throughout Life. Immunity, 48, 202-213.
https://doi.org/10.1016/j.immuni.2018.01.007
[2]  Murphy, K. and Weaver, C. (2016) Janeway’s Immunobiology. Garland Science.
[3]  Janeway, C.A., Travers, P., Walport, M. and Shlomchik, M.J. (2005) Immunobiology: The Immune System in Health and Disease. 6th Edition, Garland.
[4]  Grigoriadis, N. and van Pesch, V. (2015) A Basic Overview of Multiple Sclerosis Immunopathology. European Journal of Neurology, 22, 3-13.
https://doi.org/10.1111/ene.12798
[5]  Weatherley, G., Araujo, R.P., Dando, S.J. and Jenner, A.L. (2023) Could Mathematics Be the Key to Unlocking the Mysteries of Multiple Sclerosis? Bulletin of Mathematical Biology, 85, Article No. 75.
https://doi.org/10.1007/s11538-023-01181-0
[6]  Dendrou, C.A., Fugger, L. and Friese, M.A. (2015) Immunopathology of Multiple Sclerosis. Nature Reviews Immunology, 15, 545-558.
https://doi.org/10.1038/nri3871
[7]  Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., et al. (2011) Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Annals of Neurology, 69, 292-302.
https://doi.org/10.1002/ana.22366
[8]  Alexander, H.K. and Wahl, L.M. (2010) Self-Tolerance and Autoimmunity in a Regulatory T Cell Model. Bulletin of Mathematical Biology, 73, 33-71.
https://doi.org/10.1007/s11538-010-9519-2
[9]  Zhang, W., Wahl, L.M. and Yu, P. (2014) Modeling and Analysis of Recurrent Autoimmune Disease. SIAM Journal on Applied Mathematics, 74, 1998-2025.
https://doi.org/10.1137/140955823
[10]  Zhang, W., Wahl, L.M. and Yu, P. (2014) Viral Blips May Not Need a Trigger: How Transient Viremia Can Arise in Deterministic In-Host Models. SIAM Review, 56, 127-155.
https://doi.org/10.1137/130937421
[11]  Jeschke, J.M., Kopp, M. and Tollrian, R. (2002) Predator Functional Responses: Discriminating between Handling and Digesting Prey. Ecological Monographs, 72, 95-112.
https://doi.org/10.1890/0012-9615(2002)072[0095:pfrdbh]2.0.co;2
[12]  Dawes, J.H.P. and Souza, M.O. (2013) A Derivation of Holling’s Type I, II and III Functional Responses in Predator-Prey Systems. Journal of Theoretical Biology, 327, 11-22.
https://doi.org/10.1016/j.jtbi.2013.02.017
[13]  Yu, P. (2005) Closed-Form Conditions of Bifurcation Points for General Differential Equations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 15, 1467-1483.
https://doi.org/10.1142/s0218127405012582
[14]  Hinrichsen, D. and Pritchard, A.J. (2004) Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness. Springer.
[15]  Xie, J.H., Le, Y. and Li, D. (2018) Nonlinear Dynamics. Science Press.
[16]  Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M. and Lassmann, H. (2000) Heterogeneity of Multiple Sclerosis Lesions: Implications for the Pathogenesis of Demyelination. Annals of Neurology, 47, 707-717.
https://doi.org/10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q
[17]  Roncador, G., Brown, P.J., Maestre, L., Hue, S., Martínez-Torrecuadrada, J.L., Ling, K., et al. (2005) Analysis of FOXP3 Protein Expression in Human CD4+ CD25+ Regulatory T Cells at the Single-Cell Level. European Journal of Immunology, 35, 1681-1691.
https://doi.org/10.1002/eji.200526189
[18]  Vélez de Mendizábal, N., Carneiro, J., Solé, R.V., Goñi, J., Bragard, J., Martinez-Forero, I., et al. (2011) Modeling the Effector-Regulatory T Cell Cross-Regulation Reveals the Intrinsic Character of Relapses in Multiple Sclerosis. BMC Systems Biology, 5, Article No. 114.
https://doi.org/10.1186/1752-0509-5-114
[19]  Baecher‐Allan, C. and Hafler, D.A. (2006) Human Regulatory T Cells and Their Role in Autoimmune Disease. Immunological Reviews, 212, 203-216.
https://doi.org/10.1111/j.0105-2896.2006.00417.x
[20]  Putnam, A.L., Brusko, T.M., Lee, M.R., Liu, W., Szot, G.L., Ghosh, T., et al. (2009) Expansion of Human Regulatory T-Cells from Patients with Type 1 Diabetes. Diabetes, 58, 652-662.
https://doi.org/10.2337/db08-1168

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133